The LM140L series of three terminal positive regulators is available with several fixed output voltages making them useful in a wide range of applications. The LM140LA is an improved version of the LM78LXX series with a tighter output voltage tolerance (specified over the full military temperature range), higher ripple rejection, better regulation and lower quiescent current. The LM140LA regulators have ±2% \(\frac{V_{OUT}}{\text{V}} \) specification, 0.04%/V line regulation, and 0.01%/mA load regulation. When used as a zener diode/resistor combination replacement, the LM140LA usually results in an effective output impedance improvement of two orders of magnitude, and lower quiescent current. These regulators can provide local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow the LM140LA to be used in logic systems, instrumentation, Hi-Fi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

The LM140LA/LM340LA are available in the low profile metal three lead TO-39 (H) and the LM340LA are also available in the plastic TO-92 (Z). With adequate heat sinking the regulator can deliver 100 mA output current. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shut-down circuit takes over, preventing the IC from overheating.

For applications requiring other voltages, see LM117L Data Sheet.

Features

- Line regulation of 0.04%/V
- Load regulation of 0.01%/mA
- Output voltage tolerances of ±2% at \(T_j = 25^\circ \text{C} \) and ±4% over the temperature range (LM140LA)
- ±3% over the temperature range (LM340LA)
- Output current of 100 mA
- Internal thermal overload protection
- Output transistor safe area protection
- Internal short circuit current limit
- Available in metal TO-39 low profile package (LM140LA/LM340LA) and plastic TO-92 (LM340LA)

Output Voltage Options

<table>
<thead>
<tr>
<th>LM140LA</th>
<th>LM340LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0V</td>
<td>5.0V</td>
</tr>
<tr>
<td>12V</td>
<td>12V</td>
</tr>
<tr>
<td>15V</td>
<td>15V</td>
</tr>
</tbody>
</table>

Connection Diagrams

TO-39 Metal Can Package (H)

![TO-39 Metal Can Package (H)](image)

See NS Package Number H03A

TO-92 Plastic Package (Z)

![TO-92 Plastic Package (Z)](image)

Order Number LM340LAZ-5.0, LM340LAZ-12 or LM340LAZ-15

See NS Package Number Z03A
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 4)

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>35V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Power Dissipation (Note 1)</td>
<td>Internally Limited</td>
</tr>
</tbody>
</table>

Operating Temperature Range
- LM140LA: -55°C to +125°C
- LM340LA: 0°C to +70°C

Maximum Junction Temperature
- Metal Can (H package): -65°C to +150°C
- Molded TO-92: -55°C to +150°C

Lead Temperature (Soldering, 10 sec.)
- Metal Can: +300°C
- Plastic TO-92: +230°C

Electrical Characteristics

Test conditions unless otherwise specified. \(T_A = -55°C \) to +125°C (LM140LA), \(T_A = 0°C \) to +70°C (LM340LA), \(I_O = 40 \text{ mA} \), \(C_IN = 0.33 \mu F \), \(C_OUT = 0.01 \mu F \).

Output Voltage Option

<table>
<thead>
<tr>
<th>5.0V</th>
<th>12V</th>
<th>15V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>Output Voltage</td>
<td>Units</td>
</tr>
<tr>
<td>10V</td>
<td>19V</td>
<td>23V</td>
</tr>
<tr>
<td>Symbol</td>
<td>Parameter</td>
<td>Conditions</td>
</tr>
<tr>
<td>VO</td>
<td>Output Voltage</td>
<td>(T_J = 25°C)</td>
</tr>
<tr>
<td>ΔVO</td>
<td>Output Voltage Over Temp. (Note 3)</td>
<td>LM140LA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LM340LA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input Voltage

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO</td>
<td>Quiescent Current</td>
<td>(T_J = 25°C)</td>
<td>3</td>
<td>4.5</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_J = 125°C)</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Load Regulation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔIO</td>
<td>Quiescent Current Change</td>
<td>(T_J = 25°C)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ΔLoad I_O = 1 – 40 \text{ mA})</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ΔLine V_IN – (\text{J}V))</td>
<td>(7.5–25)</td>
<td>(14.3–30)</td>
<td>(17.5–30)</td>
</tr>
</tbody>
</table>

Long Term Stability

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_N</td>
<td>Output Noise Voltage</td>
<td>(T_J = 25°C) (Note 2)</td>
<td>40</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 10 \text{ Hz} – 10 \text{ kHz})</td>
<td>45</td>
<td>52</td>
<td>52</td>
</tr>
</tbody>
</table>

Ripple Rejection

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔVIN</td>
<td>Ripple Rejection</td>
<td>(f = 120 \text{ Hz})</td>
<td>55</td>
<td>62</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_IN – (\text{J}V))</td>
<td>(17.5–28.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔVOUT</td>
<td>Ripple Rejection</td>
<td>(f = 120 \text{ Hz})</td>
<td>7</td>
<td>14.2</td>
<td>17.3</td>
</tr>
</tbody>
</table>

Notes:

1. The temperature coefficient of \(V_{OUT} \) is typically within 0.01% \(V_{OUT} /\text{°C} \).
2. It is recommended that a minimum load capacitor of 0.01 \(\mu F \) be used to limit the high frequency noise bandwidth.
3. The temperature coefficient of \(V_{OUT} \) is typically within 0.01% \(V_{OUT} /\text{°C} \).
4. A military RETS specification is available upon request. At the time of printing, the LM140LA5.0, -12, and -15 RETS specifications complied with the Min and Max limits in this table. The LM140LAH-5.0, LM140LAH-12, and LM140LAH-15 may also be procured as Standard Military Drawings.
Typical Performance Characteristics

Maximum Average Power Dissipation

- **Metal Can Package**
 - Maximum Average Power Dissipation
 - Maximum Average Power Dissipation with 30°C heatsink

- **Plastic Package**
 - Maximum Average Power Dissipation
 - Maximum Average Power Dissipation with 30°C heatsink

Peak Output Current

- Current vs. Input Voltage differential

Dropout Voltage

- Dropout voltage vs. Junction Temperature

Output Impedance

- Impedance vs. Frequency

Ripple Rejection

- Ripple rejection vs. Frequency

Quiescent Current

- Quiescent current vs. Input Voltage

Quiescent Current (mA)

- Quiescent current vs. Junction Temperature

Typical Applications

Fixed Output Regulator

- LM140LA

Adjustable Output Regulator

- LM140LA-5.0
 -

Required if the regulator is located far from the power supply filter.

See note 3 in the electrical characteristics table.

TL/H/7782-4

TL/H/7782-5

TL/H/7782-6
Physical Dimensions inches (millimeters)

TO-39 Metal Can Package (H)
Order Number LM140LAH-5.0, LM140LAH-5.0/883, LM140LAH-12, LM140LAH-12/883,
NS Package Number H03A
Physical Dimensions inches (millimeters) (Continued)

TO-92 Plastic Package (2)
Order Number LM340LAZ-5.0, LM340LAZ-12, or LM340LAZ-15
NS Package Number Z03A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.