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The x-ray mass attenuation coefficients of zinc are measured in a high-accuracy experiment between 7.2
and 15.2 keV with an absolute accuracy of 0.044% and 0.197%. This is the most accurate determination of
any attenuation coefficient on a bending-magnet beamline and reduces the absolute uncertainty by a factor of
3 compared to earlier work by advances in integrated column density determination and the full-foil mapping
technique described herein. We define a relative accuracy of 0.006%, which is not the same as either the precision
or the absolute accuracy. Relative accuracy is the appropriate parameter for standard implementation of analysis
of near-edge spectra. Values of the imaginary components f ′′ of the x-ray form factor of zinc are derived.
Observed differences between the measured mass attenuation coefficients and various theoretical calculations
reach a maximum of about 5% at the absorption edge and up to 2% further than 1 keV away from the edge. The
measurements invite improvements in the theoretical calculations of mass attenuation coefficients of zinc.
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I. INTRODUCTION

The x-ray atomic form factor is the fundamental parameter
describing the interaction of x rays with matter. Accurate
values of the mass attenuation coefficient and hence of the
dielectric function are vital for many areas such as particle
energy loss functions [1], electron energy loss spectroscopy
[2], crystallography [3,4], tomography [5], and polarizability
and reflectometry [6]. A wide range of atomic [7], molecular
[8], and solid-state [9,10] features can be calculated given
accurate values of x-ray atomic form factors of the constituent
elements.

Theoretical estimates of atomic form factors have been
tabulated since early in the development of x-ray science for
all elements across a wide range of energies. The National
Institute of Standards and Technology (NIST) currently sup-
ports two such tabulations; XCOM [11,12] and FFAST [13–15].
Significant differences exist in the values of the form factors
from these tabulations across a wide range of energies and
elements [13,16], the largest being at and immediately above
absorption edges [17]. These discrepancies lead to a significant
problem when calculating mass attenuation coefficients in
these regions.

Figure 1 shows the percentage difference between various
experimentally or theoretically determined mass attenuation
coefficients of zinc and the corresponding theoretical values
calculated using FFAST. Despite experimental errors between
1% and 2% quoted by the various authors, the values are
inconsistent, have a spread of about 10%, and generally do
not agree with theoretical values. Above the absorption edge

at 9.623 keV, there are few reported measurements of mass
attenuation coefficients of zinc. Given these inconsistencies,
uncertainty, and spread, existing experimental results cannot
be used to distinguish different theoretical approaches (Fig. 1).

The absorption edge region is of particular importance for
widely used synchrotron techniques such as x-ray absorption
fine structure (XAFS) [22] and x-ray absorption near-edge
structure (XANES) [9]. The need for accurate measurements
of the mass attenuation coefficient in this region has been noted
by other groups [23] and in particular the measurement of
K-shell [24] and L-shell [25] jump factors and jump ratios has
been of concern. Investigation of photoeffect cross sections
for subshells depends upon accurate experimental data and
should preferably cover a range of energies to avoid key
systematics [26]. In the edge region, accurate values of the
mass attenuation coefficient are needed to derive structural
and chemical information, such as for example elemental and
phase concentrations derived from the edge height [27].

The discrepancies between theory and experiment, between
theory and theory, and between experiment and experiment led
the International Union of Crystallography (IUCr) to conduct
a study of problems associated with the measurement of
x-ray mass attenuation coefficients [28,29]. The study found
that systematic errors had not been quantified, leading to
discrepancies greater than the individual measured uncertainty.
Such measurements could not be used to distinguish among
different theoretical approaches. The study found that a
key tool for determining sources of error was to perform
measurements on different thicknesses of absorbing material.
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FIG. 1. Experimental and theoretical values of the mass atten-
uation coefficients of zinc displayed as a percentage difference
from the FFAST tabulated values [14,15]. Experimental results (�,
Hopkins [18]; �, Unonius and Suortti [19]) are plotted with quoted
error bars. Few results have been published in the region above the
K-edge (9.623 keV). For such an important element, this dearth of
information is surprising and limits detailed bonding and chemical
analysis. There are significant discrepancies between experimental
results, often larger than the reported error. Tabulated theoretical
values include XCOM [11,12] (dotted line with + marking tabulated
energies) and Creagh and McAuley [20] (dashed line with × marking
energies tabulated in the International Tables for Crystallography).
The dot-dash line shows the experimental-theoretical values of Henke
et al. [21] with the � symbol marking the tabulated energies.

This varies the attenuation at a given energy, allowing the
functional form of some systematic errors to be identified.

Recent measurements of mass attenuation coefficients of
molybdenum, silver, copper, and tin by our group have revealed
significant systematic differences between measurements and
theory in the region of the K-edge [30–34], including the
region important for studies of XAFS [35], XANES [36,37]
and differential XAFS [38]. The current study investigates the
x-ray attenuation coefficients of zinc, an element with wide
applications in industrial, catalytic, and biomedical fields, in an
energy region including the K absorption edge. Discrepancies
between theory and experiment have been noted by other
authors [39] for different metal foils [40,41] and vapors
[42]. The current study is the first high-accuracy experiment
on zinc. A new method for the absolute mapping of the
integrated column density and changes to the experimental
data collection have reduced the experimental error bars by a
factor of 3 compared to earlier work. This is the most accurate
measurement carried out on a bending-magnet beamline.
Hence this study makes it possible to investigate anomalies
for zinc.

In the present study, we have employed the x-ray extended
range technique (XERT), which makes use of multiple foils
and a wide range of energies to measure mass attenuation
coefficients on an absolute scale [43–48]. The XERT approach
allows testing for a range of systematic errors, corrections for
which are applied. A new method to determine the integrated
column density [49] [the density of the absorber along the path
of the x-ray beam as described in Eq. (5) later] is described
which further improves the accuracy of the measured mass
attenuation coefficients.

This paper investigates sources of systematic error and
presents corrected, beamline-independent measurements of
the x-ray mass attenuation of zinc between 7.2 and 15.2 keV
with accuracies of between 0.044% and 0.197%. A comparison
is then made between our measurements and theoretical
tabulations, and discrepancies of up to 5% are found. The
mass attenuation coefficient, the photoelectric mass absorption
coefficient, and the imaginary component of the form factor
are determined after subtraction of Raleigh and Compton
scattering cross sections (Table I).

In Table I, we introduce the relative accuracy, as opposed
to precision or absolute accuracy, of the mass attenuation
coefficient. The relative accuracy is the uncertainty in the
mass attenuation coefficient relevant for XAFS and XANES
analysis. Specifically, it is the uncertainty estimate based
on statistics and all possible systematics which affect the
near-edge structure but not including the absolute scaling of
the amplitude of that structure. In other words, the relative
accuracy omits the uncertainty in determining the absolute
value of the mass attenuation coefficient (cm2/g) but requires
that all measurements be accurately located on the same
relative scale.

An accuracy in, for example, SI units for relevant axes
must always be absolute, and precision is always the local
reproducibility. However, we have proven in past work that
many systematic errors in typical measurements are much
greater than the estimate of reproducibility in a particular
experiment, especially when (as is common) parameter space
is not carefully investigated. Many experiments do not (even)
provide a robust estimate of reproducibility, but it is always
important for critical analysis to provide as robust a measure-
ment of accuracy as possible. Some systematics contribute
directly to an investigation of relative structure such as is
investigated in XAFS analysis, where the scale and height
of features may be referenced to an arbitrary edge height.
Investigating systematics which contribute to this latter study
is important and is presented in this paper. Careful and correct
propagation of experimental uncertainties is needed for the
evaluation and improvement of XAFS models [50].

II. EXPERIMENTAL DETAILS

The x-ray beam was produced using the bending-magnet
beamline 20BM at the Australian National Beamline Facility
of the Photon Factory synchrotron in Tsukuba, Japan. Figure 2
shows the layout of the experimental components. A Si(111)
double-reflection monochromator was used to select the beam
with a small energy bandwidth of order 3 eV [51]. Slits
defined the beam size to be 0.5 mm high by 2 mm wide.
The Big Diff, a large powder diffraction chamber [52], was
used to determine the beam energy and energy bandwidth
using powder diffraction patterns of NIST Standard Reference
Material (SRM) Si 640c [53].

Downstream from the powder diffractometer was the
experimental table with the specimen stage. Ion chambers
and daisy wheels were placed symmetrically upstream and
downstream of the zinc foil absorbing specimens to monitor
the incident and attenuated x-ray beam. Between the ion
chambers and the zinc foils, apertures and secondary foils were
mounted on daisy wheels to measure the angular dependence
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TABLE I. Mass attenuation coefficients [ µ

ρ
] and the imaginary component of the form factor, f ′′, as a function of energy. The total

one-standard-deviation uncertainty is presented in brackets after the number. The relative absolute accuracy of the mass attenuation coefficient
is presented as the σ ([ µ

ρ
])r percentage relative accuracy error in column 3, and as the percentage (absolute) accuracy σ ([ µ

ρ
])a in column 4.

Column 5 lists the photoelectric mass absorption coefficient [ µ

ρ
]pe, derived by subtracting the mass attenuation due to Raleigh and Compton

scattering, [ µ

ρ
]R+C (column 6) from the total mass attenuation coefficient in column 1, in order to derive the form factor f ′′ in column 7

using Eq. (12). The uncertainty in [ µ

ρ
]R+C is estimated by half the discrepancy between tabulations in XCOM and FFAST and is included in the

uncertainty of f ′′.

Energy [ µ

ρ
] σ ([ µ

ρ
])r σ ([ µ

ρ
])a [ µ

ρ
]pe [ µ

ρ
]R+C f ′′

(keV) (cm2/g) % relative % absolute (cm2/g) (cm2/g) (e/atom)

15.2255(12) 78.397(41) 0.029 0.053 77.335(97) 1.062(71) 1.83(12)
14.6257(11) 87.284(57) 0.049 0.066 86.172(84) 1.111(66) 1.95(11)
14.0222(11) 97.767(67) 0.053 0.069 96.601(67) 1.165(56) 2.10(10)
13.4208(10) 109.924(62) 0.035 0.056 108.6997(41) 1.224(49) 2.267(92)
12.8180(11) 124.249(64) 0.026 0.051 122.9607(90) 1.288(45) 2.449(86)
12.4176(11) 135.243(85) 0.045 0.063 133.9091(33) 1.334(43) 2.584(84)
12.0148(12) 147.907(71) 0.019 0.048 146.5242(73) 1.383(43) 2.736(86)
11.6143(13) 161.699(77) 0.017 0.047 160.2643(92) 1.434(45) 2.893(91)
11.2139(14) 177.92(11) 0.050 0.067 176.4381(81) 1.489(48) 3.07(10)
10.8124(15) 195.946(87) 0.006 0.044 194.3975(63) 1.548(53) 3.26(11)
10.4116(16) 218.12(30) 0.130 0.138 216.5165(83) 1.611(60) 3.50(13)
10.0108(18) 247.32(34) 0.133 0.141 245.6427(16) 1.678(70) 3.82(15)
9.6098(19) 34.826(30) 0.075 0.087 33.075(26) 1.750(64) 0.494(18)
9.2089(20) 38.848(31) 0.068 0.081 37.020(48) 1.827(57) 0.529(16)
8.8081(21) 44.102(87) 0.192 0.197 42.192(02) 1.910(52) 0.577(16)
8.4069(23) 50.290(31) 0.042 0.061 48.290(90) 1.999(51) 0.631(16)
8.0065(24) 57.711(72) 0.117 0.126 55.615(11) 2.095(53) 0.692(17)
7.6056(26) 66.672(43) 0.047 0.064 64.473(72) 2.199(41) 0.762(14)
7.2048(27) 77.376(91) 0.110 0.118 75.059(76) 2.317(36) 0.840(13)

of scattering [54] and the presence of harmonic components
in the beam [55], respectively.

The four zinc foils were mounted on the specimen stage
and could be translated horizontally and vertically as well
as rotated about horizontal and vertical axes. The translation
movements were reproducible to within 1 µm and ensured that
the x-ray beam always passed through the same point of the foil
at which the measurements of the mass attenuation coefficients
were made. This ensured that the attenuation measurements
were always carried out for the same local thickness of the
foils.

The micropositioning facility of the stage was also used to
raster scan across one of the foils in order to map at a given

Monochromator

Powder
Diffractometer

Upstream
Ion Chamber

Upstream
Daisy Wheel

Downstream
Daisy WheelSpecimen

Stage

Downstream
Ion Chamber

Zinc
Foils

FIG. 2. (Color online) A schematic of the experimental setup.
Ion chambers are located upstream and downstream of the specimen
stage. Between the specimen stage and the ion chambers, daisy wheels
are rotated to insert further absorption foils and apertures into the
beam to test for possible systematic corrections. Four zinc foils were
mounted on the specimen stage.

energy the attenuation at points regularly distributed over the
entire foil. This full-foil mapping made it possible to determine
the average mass attenuation coefficient of the foil. Combined
with the measured mass and area of the foil, this enabled us
to determine the integrated column density of that foil at the
point at which the measurements of the mass attenuation at all
the various energies were carried out [49].

Four zinc foils of nominal thickness 10, 25, 50, and
100 µm were chosen to provide a range of log attenuation
values between 0.5 and 6 across the experimental energy
range (Fig. 4). A modified Nordfors criterion [32,56] specifies
this as the range of attenuations which leads to an optimal
measurement of the mass attenuation coefficients.

III. MEASUREMENT AND ANALYSIS

Analysis of the experimental data can be broken into four
independent tasks: determination of the energy, of the mass
attenuation coefficient, of sources of systematic error, and of
the integrated column density. First the energy of the beam
was determined. This was performed by recording powder
diffraction patterns of the powder calibration standard Si 640c
[57] at regular energy intervals. A calibration curve for the
monochromator motor encoder reading against the energy of
the beam was determined from the silicon powder diffraction
patterns using the method described in [53] and [51].

The second task was the determination of the mass
attenuation coefficients on an absolute scale. This involved ion
chamber measurements, their normalization, and correction
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FIG. 3. The difference between the nominal energy of the
monochromator encoder reading and the energy determined from
the silicon standard powder diffraction patterns at various energies.
The correction to the nominal values is consistent with a linear
interpolation.

for systematic errors affecting these measurements. The
following sections provide details of these procedures. In this
experiment we found an important source of systematic error to
be the contribution of fluorescent radiation in the energy region
immediately above the absorption edge. Another potential
source of systematic error—higher order energy harmonic
contributions to the monochromatized beam—was minimized
by monochromator detuning and corrected for.

A. Energy determination

The energy of the beam was tuned by the Si(111) double-
reflection monochromator from 17 to 10 keV monotonically to
avoid backlash errors introduced by changing the direction of
movement of the monochromator. The motor controlling the
angle of the monochromator had an encoder which recorded
the angle of the silicon crystal relative to the beam.

In order to determine the energy more accurately, powder
diffraction patterns of SRM Si 640c [57] were collected at
a number of energies between 10 and 17 keV. By using
these energies and the corresponding encoder readings, a
calibration was established which proved to be linear (Fig. 3).
The differences between the encoder readings and the energies
determined from the silicon powder patterns ranged between
26 eV at 18 keV and 8 eV at 10 keV. The energies below 10 keV
were determined by extrapolating the energy calibration curve
shown in Fig. 3.

B. Measurements of the attenuation

Ion chambers monitored the x-ray beam upstream and
downstream of the absorbing foils. The ion chambers were
flowed with N2 gas to reduce the possibility of ion chamber
nonlinearity due to ion gas recombination. Between the two
ion chambers the beam was attenuated by the foil and also
by the air path regions, the ion chamber windows, and the
ion chamber gas from the upstream x-ray intensity I0 to the
downstream x-ray flux I . The beam is attenuated by the foil by
exp(−[µ

ρ
][ρt]s) where [ρt]s is the integrated column density
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FIG. 4. Measured [ µ

ρ
][ρt] values for the four zinc foils with

nominal thicknesses of 10 µm (�), 25 µm (×), 50 µm (�), and
100 µm (�). Between 10 and 12 keV, the attenuation of the 50-µm
foil was too great to yield accurate results. The attenuation of the
100-µm foil was too great to yield accurate results between 10 and
15 keV.

of the foil and [ µ

ρ
] its mass attenuation coefficient. The four

different specimen thicknesses are denoted by s. To correct
the measured ion chamber intensities for the nonspecimen
absorption, upstream and downstream intensities are recorded
with the attenuation of the “blank” with the specimen removed.
The specimen attenuation is then determined by

exp

(
−

[
µ

ρ

]
[ρt]s

)
= I

I0

/IB

IB
0

s = 1, 2, 3, 4, (1)

where IB are the IB
0 are the ion chamber readings in the

absence of the foil [58,59]. All measured intensities were
corrected for the “dark current” D (i.e., the current measured
when no beam is present). The dark current was measured
and subtracted from all ion chamber measurements, so that the
specimen attenuation is the exponential of the negative of the
log ratio ln(R):

e[− ln(R)] = e

(
−

[
µ

ρ

]
[ρt]s

)
=

(
I − D

I0 − D0

)/ (
IB − DB

IB
0 − DB

0

)
= 1

R
.

(2)

It is essential that the dark current be measured and
corrected for in any x-ray absorption experiment, including
XAFS and XANES experiments [29,60].

C. Sources of systematic error

1. Fluorescent radiation and scattering

The measured attenuation, [µ

ρ
]local, is affected by the loss of

x rays due to scattering and fluorescence of the incident beam
by the absorbing foil. In practice, the finite size of the apertures
between the upstream and downstream ion chambers results
in some angular scattering and fluorescent radiation being
included in the intensities. Raleigh and Compton scattering
and fluorescent radiation can all contribute to the ion chamber
count rate. The scattering and fluorescent radiation signal is a
strong function of foil thickness.
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FIG. 5. Percent difference between measurements with two dif-
ferent size apertures due to fluorescent radiation for the 50-µm foil.
The difference is highest at the absorption edge and zero within error
below the edge and starting about 2 keV above it. The χ2

red value of
the fit is 2.4.

Multiple apertures were mounted on the upstream and
downstream daisy wheels in order to determine the aperture
size dependence of the ion chamber readings. The largest
contribution to aperture-dependent scattering and fluorescent
radiation is fluorescence in the absorbing foil. A straightfor-
ward ab initio model [54] based on the differential absorption
of the fluorescence of incident-beam x rays as a function of
the aperture size was fitted to the difference between the two
aperture measurements in Fig. 5. The model fits the data well
as indicated by the χ2

r values of the fits.

2. Harmonic contributions and subtraction of dark current

The silicon(111) monochromator Bragg angle was adjusted
to select a particular energy from the energy spectrum of the
synchrotron. Simultaneously, this angle satisfies the Bragg
equation for the higher orders of this reflection with multiples
of the fundamental energy. Because the (222) reflection is
forbidden, and orders higher than the (333) correspond to
negligible or zero contributions, it is the harmonic contribution
of the (333) reflection that is of most concern.

Higher energies of the beam have a different mass atten-
uation coefficient. The contribution from harmonic contami-
nation depends upon the difference between [µ

ρ
]f [ρt] of the

fundamental energy and its value [µ

ρ
]h[ρt] for the harmonic

component. Since the difference is thickness-dependent, com-
paring the measurements for different foil thicknesses with the
same [µ

ρ
] is used to determine the higher order contribution

to the measured [µ

ρ
][ρt] and correct for it [55,61,62]. The

variation of the recorded log intensity ratio with foil thickness
due to the third-order harmonic component is given by the
second term of

exp

([
µ

ρ

]
[ρt]

)
= (1 − x) exp

([
µ

ρ

]
f

[ρt]

)

+ x exp

([
µ

ρ

]
h

[ρt]

)
, (3)
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FIG. 6. The model of the harmonic contribution to the attenuation
[ µ

ρ
][ρt] of the multiple aluminium foils mounted on the daisy wheel

at 9.61 keV. The model of Eq. (3) fitted the experimental data with a
small harmonic fraction of x = 0.0310% ± 0.0064%.

where x is the fraction of the harmonic component in the
beam. For very thick foils, both the fundamental and harmonic
components of the beam become attenuated so that no counts
are detected by the downstream ion chamber [63]. A term �D

is included to account for this nonlinearity:

exp

([
µ

ρ

]
[ρt]

)
= I − D − �D

I0 − D0
, (4)

where �D is the error in the downstream ion chamber dark
current.

Aluminium foils were mounted on daisy wheels to test for
the presence of harmonic components in the beam. Figure 6
shows the fitted function of Eq. (3) at 9.61 keV. At this energy,
the model is well described with a higher order harmonic
component accounting for 0.0310% ± 0.0064% of the beam.
The slopes of the two linear sections of the figure correspond
essentially to the values of [ µ

ρ
] for the fundamental and

harmonic x rays, respectively; this fact can be used as a test
of the final curve after correction for dark current. At other
measured energies the harmonic component was found be less
than 0.031%, except for the lowest energy (7.2 keV) where
the harmonic component was greatest with 0.31% ± 0.06%.
Corrections were made to the measured [µ

ρ
][ρt] values to

account for the harmonic component according to Eq. (3).

3. Bandwidth

The monochromated x-ray beam has a small energy
bandwidth. Previous measurements [64] have found that
the energy bandwidth is an important source of error in
absorption experiments when the gradient of the mass attenu-
ation coefficient is significant, particularly at the absorption
edge. The results presented here are on a coarser energy
grid and all measurements—except possibly those between
10.0 and 10.2 keV—are made in regions where the mass
attenuation coefficient is varying slowly. Accordingly, we have
not observed any bandwidth effect. If present, the bandwidth
effect would likely only affect the measurement made at
10.0108 keV. An experiment on a much finer energy grid is
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FIG. 7. Differences between [ µ

ρ
] of the foils and their weighted

mean at each energy after determination of foil-integrated column
densities. By assuming a density of zinc metal foil of 7.13 ± 0.01 g
cm−3 [66], the local thicknesses of the four foils at the points where the
x-ray beam passed through the foils were determined to be 102.91 ±
0.09 µm (�), 51.69 ± 0.03 µm (�), 26.01 ± 0.015 µm (×), and
9.347 ± 0.006 µm (�), rather than the nominal thicknesses of 100,
50, 25, and 10 µm. The average thickness of the nominally 50-µm-
thick foil was 51.597 ± 0.014 µm (�). The χ 2

r value of the fit was
1.23. The foil mapping measurement is indicated by the large square
at 15.2 keV.

recommended and would probably require such a correction
in the immediate vicinity of the edge.

4. Roughness

Roughness of the foil specimens is a potential source of
error in absorption experiments [30]. The effect of roughness
is dependent on the thickness of the foil, as the percentage
magnitude of the correction is inversely proportional to
thickness [65]. The thinnest foil used in these measurement
was 9.36 µm thick. Previous experiments have seen the
roughness effect for foils thinner than 5 µm.

The signature expected in Fig. 7 due to a systematic effect
of roughness would be a large deviation in the weighted mean
at the edge, which would steadily decrease with increasing
energy above the absorption edge. We have observed such
a signature in earlier studies. However, Fig. 7 does not
contain any thickness-dependent residual patterns to suggest a
systematic residual due to roughness. There is some deviation
of the thinnest foil below the edge, but this signature is not
consistent with a roughness correction because the deviation
is not present above the absorption edge.

D. Integrated column density

The integrated column density [ρt]xy is the density at point
(x, y) of the foil integrated along the path of the x-ray beam
and averaged over the x-ray beam cross section,

[ρt]xy =
∫ t

0
[ρ]xyz dz, (5)

where [ρ]xyz is the density of the foil at any given point. The
beam travels in the z direction and passes through the foil
at the point (x, y). Hence this is similar to a profilometer or

micrometer definition of thickness but relates to the actual
measurement and possible variations in density, roughness,
or void structures in the material under investigation. Given
the local absolute value of the integrated column density
of the mapped foil, the integrated column densities of the
other experimental foils were derived from a comparison
of their measured attenuations with that of the mapped foil
by minimizing χ2 deviations of the weighted mean of the
measured [µ

ρ
][ρt] values at each energy [49]:

χ2 =
∑
E

∑
F

⎛
⎜⎜⎝

[
µ

ρ

]
EiFj

−
[

µ

ρ

]
Ei

σ

([
µ

ρ

]
EiFj

)
⎞
⎟⎟⎠

2

. (6)

Equation (6) determines the χ2 value of the weighted mean
of the attenuation coefficients of the foils at each experimental
energy Ei as a function of the foil Fj . Figure 7 shows
the residuals from the fitting procedure. This procedure was
carried out only after all of the thickness-dependent systematic
errors considered in the earlier sections had been corrected for.

E. Full-foil mapping of the attenuation

The largest source of uncertainty in measurements of
mass attenuation coefficients using metal foils is often in
the absolute determination of the local integrated column
density [30,67], defined as the integral of the density along the
path traversed by the x-ray beam [49]. To determine the average
integrated column density of the foil, [ρt]av, one measures the
total mass and area of the foil:

[ρt]av = m

A
. (7)

The foils were weighed on a microgram Mettler microbal-
ance to determine their mass m with an error of �m/m of
0.002%. The perimeter of the foils was mapped at 172 points
using an optical comparator to determine their area A with an
error �A/A of 0.026%. The local integrated column density
is determined from [ρt]av by

[ρt]local =

[
µ

ρ

]
[ρt][local][

µ

ρ

]
[ρt]av

[ρt]av = [ln(R)]local

[ln(R)]av

m

A
. (8)

To determine the local integrated column density, we
modify the prescription given in [49] as follows. The 50-µm-
thick foil was mapped by translating the foil vertically and
horizontally about the x-ray beam at 15.2 keV. Figure 8 shows
the local value of [ln(R)]local, which is proportional to the map
of the relative local integrated column density [ρt]local. The
foil is mapped by the x-ray beam in 2-mm horizontal steps and
0.5-mm vertical steps. At each step the measurements were
repeated ten times to determine [ln(R)]local with an uncertainty
σ given by the standard error of the measurements. For the
central point 100 repeated measurements yielded a standard
error σ[ln(R)]local = 0.0058%.

The foil-only area was maximized by supporting the foil
with a newly designed Perspex holder that held the foil along
two edges only [63]. This avoided the need to fit a foil holder
to the attenuation profile. The average over the foil-only region
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FIG. 8. The relative local attenuation of the foil mapped by the
x-ray beam. The rolling seen in the integrated column density is
representative of the structure of the foil.

yields an uncertainty in [ln(R)]av as the standard deviation of
[ρt]av:

σ[ln(R)]av =
√∑

σ 2

√
N

, (9)

where N is the number of points mapped across the foil. The
standard deviation of [ln(R)]av following Eq. (9) was 0.024%.

At the edges of the foil, only a fraction of the beam, f ,
passes though the foil while the remaining fraction, (1 − f ),
passed though either the Perspex holder or air. For each of
the four foil edges, a model estimated the fraction of the
beam passing through the foil at each point along the edge
under the assumption that the edges were straight lines. In the
central region of the foil, the beam passed through only foil and
therefore f is equal to one. The error in the value of [ln(R)]av

due to the uncertainty of each point mapped is calculated as
the area-weighted standard deviation of the points:

σ[ln(R)]av =
√∑

σ 2f√∑
f

. (10)

The standard deviation of [ln(R)]av following Eq. (10) was
0.035%. The uncertainty associated with the integrated column
density determination σ[ρt]local is then[

σ[ρt]local

[ρt]local

]2

=
[

σ[ln(R)]local

[ln(R)]local

]2

+
[
�A

A

]2

+
[
�m

m

]2

+
[

σ[ln(R)]av

[ln(R)]av

]2

. (11)

Including the edge points, which generally had larger
uncertainties than the central points, the final percentage
uncertainty of the local integrated column density was found to
be 0.044%. The two terms which contributed the most to the
final uncertainty were the area-weighted standard deviation,
which accounted for 0.035%, and the uncertainty in the area
of the foil, which accounted for 0.026%.

IV. TABULATION OF RESULTS

Table I presents the measured mass attenuation coefficients
as a function of the photon energy with the total uncertainty
in least significant figures in parentheses. The percent relative
accuracy σ ([µ

ρ
])r is the weighted standard deviation, as just

discussed, relevant when comparing the mass attenuation coef-
ficients presented here with measurements made on a relative
energy scale, such as in XAFS or XANES measurements.
The percent absolute accuracy σ ([µ

ρ
])a is the percentage

uncertainty in the weighted standard deviation including the
uncertainty in the determination of the absolute integrated
column density. The percent absolute accuracy is the error
which is relevant in a comparison of our measured mass
attenuation coefficients with theory or other experimental
measurements.

The imaginary components of the atomic form factors are
related to the photoelectric mass absorption coefficients by

f ′′ =
EuA

[
µ

ρ

]
pe

2hcRe

, (12)

where E is the energy, u the atomic mass unit, A the atomic
mass, and Re the classical electron radius, and the other
symbols have their usual meanings. The imaginary part of the
form factor f ′′ is calculated from the photoionization cross
section after subtracting the Rayleigh and Compton scattering
contributions, [µ

ρ
]R+C, obtained from the FFAST calculation

[13–15]. The uncertainty in [µ

ρ
]R+C is estimated to be half the

discrepancy between the values tabulated in XCOM and FFAST

and is included in the calculation of the uncertainty of f ′′.

V. COMPARISON WITH THEORY

NIST recommends two theoretical tabulations for the
photoelectric, Compton, and Rayleigh scattering of x rays,
which are used to calculate mass attenuation coefficients. Other
scattering contributions are negligible in this energy range.
These are plotted in Fig. 9 with our measurements.

8 10 12 14
Energy (keV)

0

50

100

150

200

250

 [ 
µ 

/ ρ
] (

cm
2 /g

)

FIG. 9. The mass attenuation coefficients given by FFAST (dotted
line) and our measurements in cm2/g. On the scale of this figure the
results of the measurements with the four foils coincide. Uncertainties
are smaller than the symbols marking the measured values.
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FIG. 10. Percent deviation of the experimental mass attenuation
coefficients from FFAST [15]. The solid line shows XCOM [11,12]
values relative to FFAST. There is a significant unexplained dis-
crepancy with all theories, especially over the region approximately
2 keV above the absorption edge (9.623 keV). In general the earlier
experimental data were unreliable at the level claimed, so agreement
with theory has in fact improved with these experimental results.
Uncertainties are smaller than the symbols marking the measured
values. Note that there is evidence that FFAST is moderately consistent
across the energy range, but with significant excursions, while XCOM

appears offset across this energy range but perhaps with fewer
excursions.

Figure 10 shows a general comparison of mass attenuation
coefficients calculated by FFAST [14] with our measurements.
Above 12.75 keV the experimental results agree with FFAST

and XCOM within the 1% quoted uncertainty of the tabulations
at these energies. In the edge region there is significant devi-
ation between theory and experiment. Below 12.75 keV the
discrepancies between FFAST and our measurements increase,
reaching a maximum just before the absorption edge. Below
the absorption edge the discrepancy decreases to zero and then
starts to rise again. Its rising trend as a percentage is parallel
to the rise of the XCOM values.

The FFAST calculations [14] are Dirac-Hartree-Fock rel-
ativistic self-consistent field computations using the Kohn-
Sham potential for effective screening, whereas XCOM [16]
uses Hartree-Slater nonrelativistic wave functions with rela-
tivistic corrections included in perturbation following Scofield,
including via alternative databases a correction for the rel-
ativistic amplitude at the origin. Creagh uses relativistic
wave functions including multipole transition contributions as
discussed in [20]; while Henke uses a semi-empirical evaluated
database from theoretical and experimental sources [21],
with dominant theory following Scofield but with deviations
perhaps dominated by evaluation of earlier experimental
contributions. The last two tabulations are presented in Fig. 1,
while Fig. 10 provides the improved comparison.

Relativistic corrections have been discussed in detail in
the theoretical databases, with perhaps the dominant effects
discussed in the literature being on the offset of the real
component of the form factor [68] and the contribution of
multipolar amplitudes at medium atomic number [69]. These
particular effects are not responsible for the discrepancy seen in
Fig. 10. The level of convergence of the calculation, however,

can lead to discrepancies with an oscillatory structure [14].
This effect is largest near absorption edges. Both calculations
make use of the independent particle approximation.

QED does play a role, especially to first order in the energy
levels and ionization edges of the quantum systems. However,
any such contribution to deviations is dominated by solid-
state effects including near-edge shifts of the wave functions
due to bonding and band structure. The Kohn-Sham method
in general has approximations relating to ionization energies
which dominate over QED shifts, and which we are addressing
in other work. Hence the discrepancies are not, at this level,
due to QED effects.

There is a peculiar trend of this in relation to the edge
[30–34,44]. So far only molybdenum, silver, copper, and tin
have been carefully investigated in this manner, and there are
key differences among the patterns observed for each. In the
near-edge region none of the theoretical approaches produces
values which agree with the measured mass attenuation coeffi-
cient and there is a strong need for a review of the calculations.
One of the particular problems is that numerous assumptions
of different types might explain part of the discrepancies.
The improved accuracy of our measurements provides strong
motivation for further review of theory, particularly in the
K-edge region, a region which is important for many x-ray
techniques including XAFS and XANES.

Limitations of convergence of theoretical wavefunctions
and eigenvalues for energy near absorption edges can lead
to oscillations in the calculated spectrum [14]. However, the
oscillatory structure seen in Fig. 10 is quite plausibly due to
many-body effects. In the near-edge region many-body effects
such as inelastic losses, local-field effects [70] and core-hole
amplitudes, and thermal vibrations can contribute significantly
to the total scattering cross section, extrinsic losses in the
propagation of the photoelectron, and intrinsic losses such as
shake-up and shake-off [71].

There has been recent renewed interest in theoretical models
for calculating XAS and optical constants in the United States,
France, and Australia in particular [72]. An improved model
for calculating XAS, FEFF9, addresses many-body effects
more accurately than previous models [73]. Unlike previous
versions of FEFF, FEFF9 is an ab initio model which can calcu-
late the total scattering cross section, and these high-accuracy
data sets have been used as test cases to develop and understand
theoretical limitations over the past five years. In this model
the dielectric and vibrational response of the system is used
to account for many-body effects from first principles [73].
Earlier solid-state and atomic theoretical approaches relied
on simplified models for many-body effects. In recent work,
one of the most advanced theoretical solid-state groups has
investigated the effects of (i) core-hole lifetimes; (ii) threshold
energy cutoff; (iii) the so-called edge singularity effect;
(iv) multipole effects; and (v) embedded atomic background
and solid-state local interactions [74]. These studies are begin-
ning to unearth contributions to the observed discrepancies, but
much more work is required.

Another ab initio model for XAS, the finite difference
model for near edge structure (FDMNES) [9], can also be
compared to other high-accuracy measurements. Such a com-
parison led to a suggested improvement in the implementation
of thermal broadening [75].

022904-8



X-RAY MASS ATTENUATION COEFFICIENTS AND . . . PHYSICAL REVIEW A 81, 022904 (2010)

4 6 8 10 12 14 16 18
Energy (keV)

-5

0

5

10
 (

 [ 
µ 

/ ρ
] ra

e-
 [ 

µ 
/ ρ

] )
 / 

[ µ
 / 

ρ]
ra

e 
) 

 (
%

) 

FIG. 11. Percent deviation of earlier experimental and theoretical
results for the mass attenuation coefficients of zinc relative to the
current experimental results. Symbols are as in Fig. 1. Shown are
Creagh and McAuley [20] values with × marking energies tabulated
in the International Tables for Crystallography, and the dot-dash line
shows the experimental-theoretical values of Henke et al. [21] with
the � symbol marking the tabulated energies.

Figure 11 compares other experimental results to our
results. A significant offset is seen to the data tabulated by
Creagh and McAuley [20], while a larger excursion in the
opposite direction is seen for the Henke tabulation. While
some experimental data do overlap the current results, most
are inconsistent with their own adjacent points and show errors
of up to 9%. Even below the edge there is a significant offset of
about 2.5% between our measurements and the measurements
of Unonius and Suortti [19]. Despite the larger uncertainties
reported previously, the spread of those results is sometimes

larger than the error bars. The spread and reported uncertainty
of previous studies of zinc means that no distinction between
the different theoretical approaches was previously possible.
The offset between measurements made by different groups
in Fig. 11 is of a similar magnitude to the offset seen
between different theoretical calculations. We have addressed
this need with higher accuracy measurements. High-accuracy
measurement provides a baseline by which the discrepancies
in the mass attenuation coefficients can be compared.

VI. CONCLUSION

The mass attenuation coefficients of zinc have been
determined on an absolute scale with an accuracy of 0.044%–
0.197% and generally to better than 0.12%, with bending-
magnet synchrotron x rays. These are the most accurate such
measurements performed on a bending-magnet, following
from the increased accuracy of the integrated column density
determination. Modifications to the foil holder led to a
reduction in the error of the measurement. The FFAST and
XCOM tabulations agree with measurements at energies above
12.75 keV within the 1% error quoted for the FFAST and XCOM

values in this region [13–15]. A significant discrepancy above
and below the K-edge is consistent with our previous studies.
Further theoretical work is needed to explain this observed
discrepancy. A further experimental study with higher energy
resolution to investigate the near-edge structure would be
desirable.
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