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Abstract 
X-ray reflectivity, widths, centroid shifts and profiles 
for curved perfect crystals are calculated from a model. 
The crystal is approximated by a stack of perfect- 
crystal lamellae or blocks with a gradually changing 
(mean) orientation. A computer program has been 
developed to calculate the above quantities in the 
Johann geometry for the composite crystal from the 
dynamic theory of diffraction. Focusing and defocus- 
ing aberrations and the use of photographic detection 
methods are included. Correction of omissions from 
earlier theory and modelling is noted, together with 
observed effects. Incoherent scattering can give dra- 
matic changes in diffracted intensities and significant 
shifts of final parameters. Effects of depth penetration 
on shifts, cosine ratios and other parameters are 
included. Assumptions of the model and implementa- 
tion are detailed. It is shown that interference effects 
between waves of roughly equal amplitudes require 
use of lamellar thicknesses greater than those corre- 
sponding to the Darwin range. Internal tests demon- 
strate agreement with the literature at extremes. The 
theory is applied to first- and fourth-order spectra in 
differential Lyman ~ wavelength measurements. Re- 
suits for pentaerythritol 002 crystals are presented. 
Paper II of this series extends this model to non- 
ideally imperfect crystals and other crystals of interest 
and discusses experimental agreement. 

1. Introduction 
Extraction of the Lamb shifts and Lyman ~ wave- 
lengths for medium-Z systems in fourth-order 
transitions by comparison with first-order transitions 
involves accounting for several systematic shifts, the 
largest of which are diffraction shifts. These are of the 
order of 1 part in 104 of the wavelengths or 13-17% of 
the Lamb shift, so any attempt to obtain accuracy 
below this level must account for them. Lines of the 
same diffraction order, with energies within a factor 
of two of one another, show large variation of these 
shifts with respect to the diffracting angle. 
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Diffraction of X-rays in Bragg and Laue geometries 
by flat perfect crystals is well understood (Zachari- 
asen, 1945; James, 1963; Hirsch & Ramachandran, 
1950; Cole & Stemple, 1962; Batterman & Cole, 1964) 
and has been studied and tested in crystals where these 
assumptions hold to a good first approximation 
(K/illne & Aberg, 1975; Bearden, Marzolf & Thomsen, 
1968; Deslattes, Torgeson, Paretzkin & Horton, 
1966). 

Theories for diffraction by perfect curved (i.e. 
stressed) crystals have been developed (White, 1950; 
Taupin, 1964; Takagi, 1969). Models following an 
eikonal approximation based on rays were developed 
and solved for the Laue geometry, and solutions of 
wave equations were presented for the Laue case with 
a spherical incident wave (Katagawa & Kato, 1974; 
Chukhovskii & Petrashen', 1977). Forms of solution 
in Bragg reflection for thick crystals in certain limits 
have been developed (Chukhovskii, Gabrielyan & 
Petrashen', 1978; Chukhovskii, Gabrielyan, Kislov- 
skii & Prokopenko, 1987; Chukhovskii & Malgrange, 
1989) but precision calculation of profiles or extension 
to non-ideal crystals has not been achieved. Standard 
implementations for curved-crystal Johann spectros- 
copy of synchrotron, stationary and fast-beam sources 
use idealized crystal elements, neglecting centroid, 
width and profile effects (Beyer & Liesen, 1988; 
Suortti & Freund, 1989). 

Application to Lamb-shift measurements has 
suffered from flaws in the theory and implementation, 
the recognition of which has lead to this investigation. 
This paper attempts to improve upon the earlier 
method for estimating diffraction parameters, to de- 
velop a theory to account for major effects in curved 
crystals, and to include other significant contributions 
to the first-fourth order and other relative shifts. It 
presents a general model for finite curved perfect 
crystals. This highlights assumptions retained with a 
view to deriving reliable refractive-index order shifts, 
profiles and diffracted intensities from a curved dif- 
fracting crystal in the Bragg geometry. The current 
purpose is to understand profiles and shifts in the 
Johann mounting on photographic film, including 
shifts and focusing from Rowland-circle aberrations 
and asymmetric depth penetration of the emulsion. 
These are evaluated, since emphasis is on production 
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of corrections to centroid positions in experimental 
data rather than being primarily concerned with re- 
flectivities. Paper II extends this model to non-ideally 
imperfect crystals and all simpler subclasses and pre- 
sents comparison with experiment. 

2. Earlier models  for finite curved perfect crystals 

Diffraction theories of electrons and X-rays by perfect 
curved crystals are commonly based on the division 
of the crystal into lamellae parallel to the surface, 
with relations between boundary conditions at 
each lamellar surface governed by wave-optical prin- 
ciples. A development of the theory, applied to X-ray 
diffraction from neutron diffraction studies, followed 
Zachariasen (1945) and formulae for perfect finite 
crystals (Boeuf et al., 1978) applied to the Bragg 
geometry. This was continued by Caciuffo, Melone, 
Rustichelli & Boeuf (1987), hereinafter referred to as 
CMRB. This paper forms the basis of the present 
discussion. Suortti, Pattison & Weyrich (1986), Popo- 
vici, Stoica, Chalupa & Mikula (1988) and Erola, 
Etel/iniemi, Suortti, Pattison & Thomlinson (1990) 
have used similar models. 

Fig. 1 illustrates the main assumptions of this per- 
fect curved crystal model. Assumptions (I) to (VII) are 
detailed in CMRB but may be summarized as treating 
the curved crystal as a series of flat rectangular thin 
crystals of thickness Ay = 2 where y is a diffraction 
coordinate defined in the Appendix together with 
other notation. The orientation of each layer is that 
of the central plane of the layer. Adjacent regions will 
generally not multiply scatter primary and diffracted 
beams because of the crystal curvature. Interference 
and coherent scattering is dominated by a localized 
region within the crystal for any given incident angle. 
Main profile contributions arise from layers where 
y ~ 0, known as region 2, and reflec.tivities at the 
surface are calculated from the energy balance. For a 

j - 1  given layer j, an incident power Ti_ 1 = [-Ii=0 tiP~ 
yields diffracted and transmitted powers R~_~ = 
T~_ tr~ and T~ = T~_ lt~ where rj is the reflectivity and 
tj is the transmitted relative intensity for thej th  layer. 
Then, 

R = ~ Rj exp (-- #S i), (1) 
j = l  

where Sj is the X-ray path length from the front 
of the j th layer to the surface of the crystal. This is 
assumed to equal the sum of path lengths through 
each crystal from layer j -  1 to 1: 

1 

S~ = ~ to/sin Ork. (2) 
k=j-1 

Assumption VI. For a given surface (or first-layer) 
orientation y(0), the orientation of the j th  layer y~ is 

given by 

yj = y(O) + cA~ (3) 

with Aj related to the crystal depth and c proportional 
to the inverse of the radius of curvature of the crystal 
[equation (8.29) of CMRB; the polarization factor is 
omitted]. 

Assumption VII. For a given orientation yj and 
thickness A) of the j th layer, the reflectivity and ratio 
of transmitted to incident powers for the layer j is 
given by either the ' thick' or infinite fiat crystal 
formulae [equation (7.28) et seq. of CMRB; see also 
Cole & Stemple (1962)] or more general finite crystal 
formulae [equations (8.48)-(8.52), CMRB]. These 
equations estimate the X-ray diffraction pattern 
R = R{y(0)} for the curved crystal. 

The profile is near perfect for radii greater than 5 m, 
giving integrated reflectivities of R~ = rc (negligible 
absorption limit). As the crystal is bent, the reflectivity 
approaches the mosaic or kinematic limit R~ = rcA,, 
where 

T,, = (1//~)/[1/(sin Oinc) + 1/(sin Oout)], 

Ala °wabsn  = •lC¢'nl T~/(2ITOTHI1/2). (4) 
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Fig. 1. Model for finite curved perfect crystals as described by 
Caciuffo et al. (1987). (a) Sketch of a narrow low-divergence 
monochromatic beam interacting with a real crystal, illustrating 
the region of the crystal diffracting in the Darwin (zero-absorp- 
tion) limit. (b) Separation of the crystal into layers of perfect 
crystals, only one of which (region II) is assumed to interact 
strongly with the radiation. (c) The energy balance considered to 
evaluate the curved-crystal reflectivity. 
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Gain in reflectivity with curvature is estimated by 
Aa. Qualitatively, this remains valid when more ap- 
propriate formulae are used [c f  (1) and equation 
(6.134) of Chantler (1990); see also Cole & Stemple 
(1962)] or when curved-model predictions are com- 
pared with these extremes. CMRB and Boeuf et al. 
(1978) agree at the 30% level with experimental inte- 
grated reflectivities from Ge (111) and ct-SiO2 (101) for 
bending radii from 0.5 to 5 m. The results test theoreti- 
cal predictions but not those aspects of greatest con- 
cern herein. 

3. Allowance for depth penetration and Johann 
geometry 

The model above estimates profiles for a uniform 
source but does not consider source size and profile, 
finite crystal size or location of diffracting beams. 
Shifts of the mean y coordinate with respect to zero 
provide information on the mean diffracting angle 
with respect to the Bragg angle. They do not,. however, 
include the geometrical shift of the beam location on 
the crystal surface with respect to the incident location 
(an effect of the depth penetration of the crystal), 
which shifts and broadens the partially focused image 
on the Rowland circle. The crystal curvature and 
finite source restrict the range of possible incident 
locations that diffract, by the variation of incident 
angle with surface location, which leads to this shift. 

A general discussion of formulae for the Johann 
mounting geometry is given elsewhere (~5.2.8-9, 
Chantler, 1990). In the SS1 instrument used in tests 
and experiments described here, the finite source lies 
well inside the Rowland circle and has significant 
angular divergence (Fig. 2). The divergence may be 
added to the final profile as a Gaussian convolution 
via the Doppler width. This broadens the profiles 
symmetrically and does not contribute a shift (the 
Doppler shift already being included). The source is 
defined by circular upstream collimators and the focus 
and distribution of the beam incident upon the foil. 
From observation of the blackening and deformation 
of the foil with exposure, the source may be rep- 
resented by a truncated Gaussian 

IRr.~. OC exp [--4(X/Sw) 2 In 2], (5) 

where sw is the full width at half-maximum (FWHM) 
of the source and the distribution is truncated at 
I xl = 0.75sw. Radiation is assumed isotropic for 
regions incident on the crystal and focused onto the 
detector, corresponding to near-normal angles of 
emission and a moderate range of incident angles on 
the crystal. 

Ray tracing over angles 0s and position x is used, 
with ranges and precision giving less than 1% effects 
on peak and integrated reflectivities and widths, and 
small saw-tooth oscillations superimposed on output 

profiles. The incident grazing angle 0in c and location 
on the crystal along the generatrix (XXz) are defined 
for each ray. This yields 0a, subtended by XXz at the 
centre of the circle defined by the crystal curvature. 
Certain terms of relative order less than 10 -3 are 
neglected in this ray-tracing exercise (Chantler, 1990). 
Two parameters define the source centre relative to 
the crystal pole. Also used are the cylindrical crystal 
radius 2Rz and the transverse angle ~1 of the incident 
beam with respect to the generatrix. 

Previous treatments refer to the asymmetry param- 
eter b as the measure of non-parellelism of the diffract- 
ing planes and the surface (CMRB; Zachariasen, 
1945). This parameter is not a constant but is a 
function of the incident angle. Diffracting planes may 

Spectrometer, 
crystal and 1 ~  
film plane 
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Target ~ 
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/ P 
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Fig. 2. Diagram of geometry of SS1 instrument. (a) View normal to 
generatrix; (b) Geometry on the generatrix of the diffracting 
crystal; additional parameters discussed in the text are x, 0s, 
Ox=n/2- LAXB, 02=n/2-- /_AZF, OA= /__XzAX, OAz= 
/_ XzAZ, xline = ZF, Y~= = arc length XzF. 
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be expected to have a mean angle 0~plan e with respect 
to the surface for flat or curved crystals. Use of a 
constant  %ta,e assumes either that  materials are iso- 
tropic or that  %~ane is small, but is generally the 
first-order contr ibut ion (el Kalman  & Weissman, 
1983). Then, 

b ~- - s i n  Oik/sin O,k 

= - 1/(cos 20~plan e -1- sin 20~plan e c o t  Oik ). (6) 

This assumes that  0 = 0, with respect to diffracting 
planes, accurate at the l0 -4 level or the level of 
refractive-index corrections. The component  of (Zplan e 

normal  to the generatrix is observed to be negligible 
in our case. 

y(0) then follows from its definition in the Appendix 
and the definition of ~, with 0il = 0 inc .  Here, (Zptan e is 
explicitly included, compared  with other  papers where 
it is implied or neglected. This provides input variables 
for the model. 

Each ray may be traced from this surface location 
and angle to the mean penetrat ion depth and back to 
the surface, yielding an output  grazing angle.0o.t and 
location relative to the crystal pole that  may be traced 
to the detector location. Convolut ion  with a final 
detector profile then gives the explicit shift (in units 
of length) of the profile a round  the Rowland circle (or 
along the detector) Y~z. The shift is calculated relative 
to a ray tracing from the crystal surface to the de- 
tector, so that  focusing and defocusing elements of the 
Johann  mount ing  relating to the crystal surface lying 
off the Rowland circle are implicitly included. Derived 
shifts are primari ly refractive-index corrections and 
diffraction shifts due to depth penetration, with small 
detector-profile contributions.  

One alternative would leave all thicknesses constant  
so that  a single finite flat crystal profile may be 
calculated a priori, defining succeeding values of y as 
y(0) + 1, y ( 0 ) +  3 , . . . ,  so that  the midplane for the 
main diffracting region would not have y = 0 but 
some other value. This divides the region of Darwin-  
ian total  reflection between two crystallites and the 
large and necessary interference between these two 
layers would be neglected. These two ' solut ions '  yield 
no error for those cases where y(0) is odd, but would 
add an error  with a period of dy = 2. This periodicity.  
(as opposed to Pendell6sun9 oscillation) may be ob- 
served in C M R B  and Boeuf et al. (1978). 

A third, a l though poor,  solution is to follow the 
model but treat  the first layer as having the thickness 
given above. Interference effects for the first layer are 
then largely neglected. Relevant reflectivity and trans- 
mission must  be calculated explicitly for the first layer 
for each ray, which is computa t ional ly  prohibitive, or 
approximated  from the value for a thickness corre- 
sponding to Ayo. If rto and tto are the reflectivity 

y (0) =- 11.5 

,6=y,=-12 
y, ×2=-10 / 

,~0 N I /  
(layer 8)yy,,,,=y,=2 

(a) 

4. Choice of diffraction coordinate 

It is not specified in the model whether the diffraction 
depth coordinate  y for the first encountered layer of 
the crystal should be y(0), y(0) - 1 or a multiple of 
two, a l though the implication is that  a multiple of two 
should be used. This suffers from the obvious flaw that  
the first layer will then not have a thickness of Ay o = 2 
but instead will have 

Ay = - 2  Int { - [ y ( 0 ) -  1]/2} - y(0) + 1, (7) 

where ' I n t '  denotes the integer part. If it is assumed 
that  the crystal projects from the mean surface by a 
thickness corresponding to A y o -  Ay, a single layer 
thickness results. A single value of reflectivity and 
transmission for a given layer (or crystallite) at a given 
incident angle may then be calculated a priori. Typi-  
cally, this implies that  crystallites project up to 
0.05 mm from the surface with periodicity dy = Ayo! 
Alternative set-ups are illustrated in Fig. 3. 

% •  y (0)=-11.5 

'~'---,~.-y~=-8.5 

L~.._.~_---4;5 
y = - l . ~  
y=,O. 5..__~,.[~_~"=-0.5 " 

] 

(b) 
Fig. 3. (a) Use of prescription of Caciuffo el al. (1987), showing the 

discrepancy between the diffraction of the first layer and the 
corresponding crystal region, with periodicity dy -- 2 and ampli- 
tude given by the reflectivity of the first layer. A simple estimate 
of the depth penetration d for the lowest layer (III 1 or 8) is 
illustrated. (b) Division of crystal into equal-thickness blocks, 
beginning at the surface: note that the peak of the Darwin curve 
(y = -1 to + 1) is divided into two regions and interference 
between the two is neglected. 
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and transmitted intensity for the crystallite of thick- 
ness to, approximations in the thick-crystallite case 
could be rl = rr0 and t~ - tto; in the thin-crystallite ex- 
treme, 

r 1 ~_ rto(t / to)  2, 

,,/,o (8) t 1 ~_ ~t0 , 

where t is the thickness of the first layer and to 
is the normal lamellar thickness. The latter is more ap- 
propriate to this problem but is only approximate. 
The interference problem is critical when y(0) is near 0, 
since this region diffracts most of the radiation if 
Ay = 2, especially if absorption is strong for the given 
radiation. Reducing the effective thickness of the first 
lamella may give errors of an order of magnitude in 
the reflectivities. Thus, this adaptation of the model 
also contributes large periodic error. 

For many rays, most of the reflectivity will arise 
from the first layer. This is true if absorption is strong, 
if the diffraction coordinate y(0) is within or near the 
Darwin total reflection condition or if y(0) is greater 
than this value. Then the full layer thickness must 
be used, setting y~-y(O) for the first case, 
y(0) < y < y(0) + Ay for the second case and y ~- y(0) 
for the third case. Each subsequent layer must then 
have y increased by the equivalent thickness of the 
crystallite Ay. When y(0) < < 0 with small absorption, 
peak reflectivity arises from the layer in which y ~- 0. 
Here the first layer is of little significance and 
the original model may be followed for all sub- 
sequent layers (y = nAy) with the thickness and 
effective diffraction coordinate for the first layer 
chosen to complete the distance to the surface 
[Yl ~ y ( 0 ) -  Ayl /2 , . . . ] .  This prescription includes 
dominant effects to first order. Problems arise regard- 
ing continuity between these regimes, but there are 
more serious flaws in other aspects of the original 
model. 

5. Depth penetration and focusing: a simple model 

The simplest estimate of depth penetration is given by 
the difference between y~ and y(0) for component j. 
This is equivalent to a depth perpendicular to the 
surface 

= (2Rz/cos ~x)[cos 0inc/COS (0 - ~p lane )  - -  1], (9) 

where 0 = Oj is the angle to the relevant diffracting 
planes, given by 

- 2yjC(Ibll/2/b)l~k'nl- [(1 - b)/b]~'o 
= 4 sin OB (sin OB -- sin 0) -- 2(0~ -- 0) sin 20u 

o r  

0 = arcsin {sin 0B - [Clbll/El~'nl/(2b sin OB)]Yi 
+ [(1 -- b)/b]~P'o/(4 sin 0B)}. (10) 

The path length from the crystal surface is then 

Sj ,  in = (2Rz/cos 0~ 1 qt_ t~) sin (0 - (~plane) 

- [(ERz/cos ~1 + ~2 sin E (0 - %lane) 
-- 4Rz d/cos gl - -  d E ] l / E .  (11) 

Similarly, the path length Sj from depth d to the 
crystal surface is given from (11) by making the 
substitution 

0 - -  0~plan e ~ 0 r .21- 0~plan e (12) 

where [replacing b with 1/b in (10)] 

O, = arcsin {sin 0n - [Cbl~'nl/(21bl a/2 sin OB)]Yj 
+ (b -- 1 )~ / (4  sin OB)}. (13) 

By correspondence with (9), the output angle is 

0out = arccos [1 + (d cos ~l/2Rz) cos (Or + ~pla,e)] 

(14) 

and 0Az, the shifted value of OA, is 

0Az = OA - -  0 -- O, + Oir, c + 0our (15) 

The profile on the source-angle scale [PH(Os)/ 
P~(0s)] is dominated by the truncated Gaussian dis- 
tribution, which does not appear on other scales, while 
the depth-penetration effect will only appear as a shift 
on the Y~z (detector) scale; on other (angular) scales, 
the effect of possible diffraction from a deep layer will 
simply add to the total intensity. Equations (8.29)- 
(8.30) of CMRB (assumption VI) may be replaced by 
the above. 

Defocusing and relaxation effects of the crystal may 
be modelled by introducing a Rowland-circle radius 
Rzf applying to the film location only, so 2Rz for the 
crystal and diffraction may be varied from 2Rzf to test 
the error introduced. Deviation from cocentricity of 
these two circles will primarily lie along the vector 
from the centre of the crystal to that of its circle, of 
magnitude Cx. Diffraction equations are unchanged, 
but relations for Y~z at the film surface in terms of 0Az 
and 02 become 

xline = - b '  + [b '2 + 4Rz2(cos 0Az -- 1.25) + Rzf 2 

-- Cx 2 + 2RzCx(1 + 2 cos 0A~)] 1/2, (16) 

- - b '  = 2Rz sin 0 2 - -  ( R z  - -  C x )  sin ( 0  2 - -  0 A 3  , (17) 

Y/z = Rzf arccos [(ERz/Rzf) cos 0Az -- Rz/Rzf 

-- (xline/Rzf) sin (02 - 0Az ) -- Cx/Rzf]. (18) 

6. Form factors and scattering 

Henke, Lee, Tanaka, Shimabukuro & Fujikawa (1982) 
and Viegele (1973, 1974) have compiled tables of form 
factors and absorption coefficients in the X-ray region, 
used here to derive profiles and diffraction shifts. 
Elastic reflection of X-rays by the crystal surface is 
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governed by the Fresnel equations. Except for graz- Here atoms are assumed to oscillate independently, 
ing-incidence geometry, roughly 0.01% of incident so thermal diffuse scattering effects are negligible, 
radiation will be reflected, giving a smooth and slowly giving 
varying background at the detector. This is incoherent 
with atomic scattering from the lattice and is neglected 
in all models. The standard interpolation formula for 
#a follows the empirical relation 

~(o~) = ~0,  
09 > rot, (19) 
0) < (.Ok, 

where (.o k is the threshold frequency, with n -~ 3 fitted 
by adjacent data points. Interpolation for f2 proceeds 
in the same way, while a linear interpolation for f l  is 
adequate, providing values for the region governed by 
the tables. Interpolation fails at absorption edges, but 
gives a first-order estimate. Tables have been extrapo- 
lated to 0.10-20 keV, using the form of approach 
to the limit ft ~ Z at high energies, yielding estimated 
errors of less than 1%. For high-order reflections, the 
non-point-like electron density of the atoms becomes 
significant and reflections are weakened by inter- 
ference from the electron cloud, f~ is corrected for 
relativistic and angle-dependent factors by using 
f'l = f l  - a f ~ -  Afo, 

AL ~- 5[Etotl/(3mc 2) + (Z/2)(E/mc2) 2 
~_ 2.19 x 10-6Z3 + 1.03 x 10-*Z 2 

+ 1.91 x 10-6Z[E(keV)] 2 
or A fr ~- [Etotl/(mc z) 

Afo = Z - ~ U(r)(sin q'r)/q'r dr, q' = 4n(sin 0)/2 (20) 
0 

where E is the photon energy and U(r) is the radial 
charge distribution, with the analytic approximation 
to the integral taken from International Tables for 
X-ray Crystallography (1974). sp 3 hybridization was 
assumed for C and Si form factors, while neutral-atom 
values were used for H, N, O, P, AI and K factors 
(where required). Minor discrepancies arise from va- 
lence-orbital bonding in particular crystals. 

Thick perfect crystals with small radii of curvature 
have large strains, limited by bond strengths in the 
crystal structure. If these do not shatter or lead to 
shear dislocations and phase boundaries (and hence 
mosaic structure), the strain will distort unstressed 
form factors. This is only significant for valence elec- 
trons near the breaking strain and is assumed negli- 
gible in this as in all models. Additional effects of 
curvature on structure factors are assumed negligible, 
the largest being due to changes in 2d spacing. 

7. Assumptions in the derivation of structure factors 

Thermal motion of atomic scatterers results in a 
smearing of the electron density function p(r) and 
a decline of the scattering amplitude (International 
Tables for X-ray Crystallography, 1983, §§2.5-2.6). 

F(hkl) = [I(K = hkl)] 1/2 

= ~ '  fj exp ( -  Mj) exp [2~zi(hxj + kyj + lzj)]. 

J (21) 

Near absorption edges (within 50eV) this is false 
but if, as in the current case, the crystal sees a narrow 
(Gaussian) distribution of energies, mean values will 
average over fine structure to yield the above esti- 
mates. Mean thermal parameters have been applied 
from crystallographic determinations of structures of 
the diffracting crystals used. Error of mean thermal 
corrections for form factors are largest for higher- 
order reflections (and larger scattering angles), but are 
reduced by inclusion of structurally dependent bond- 
ing effects. 

Empirical summation rules for absorption coeffi- 
cients are given elsewhere (International Tables for 
X-ray Crystallography, 1983, §3.2). Coherent Rayleigh 
scattering and incoherent Compton scattering con- 
tributions to the loss of intensity and to experimental 
absorption coefficients are assumed small or uni- 
form for measurements in the polycrystalline state. 
Summation rules for attenuation coefficients and in- 
terpolation formulae are valid to a few percent, so 
form factors and structure factors are also valid. 
Structure factors and 6' values are complex, providing 
absorptive and scattering components for the coher- 
ent interaction of photons with the crystal. 

The total attenuation coefficient within the crystal 
is given by ]~tot = ]2photoabs + O'coherent -~- O'incoherent" 
Photoabsorption and coherent scattering are taken 
into account in the above equations and Pphotoabs is 
given accurately by -(2zt/2) Im (6'0). To arrive at the 
total attenuation in a region not diffracting at the 
Bragg angle, estimates of coherent and incoherent 
contributions must be added (Viegele, 1974). Incoher- 
ent scattering has absorptive and scattering compo- 
nents, but removes intensity from the beam, reduces 
the locally available number of oscillators and is 
absorptive. Scattered photons neither interfere with 
the field directly (to first order) nor couple to field 
equations via interaction with further oscillators. The 
incoherent cross section should thus be added to 
Im (6'0) and Im (6'~). 

Previous developments of the theory (Zachariasen, 
1945; James, 1963; Taupin, 1964; CMRB) have neg- 
lected or ignored this effect, although the first two 
discuss incoherent scattering. For hydrogen at 2 keV, 
the incoherent contribution is 14% of the total atten- 
uation coefficient, while at 10 keV 93% of the total 
attenuation is provided by this process, including a 
6.5% contribution from the coherent process (Viegele, 
1973, 1974). The effect on the imaginary component 
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of ff in this case is therefore to increase it by two 100 
orders of magni tude!  (See Fig. 4.) For  a typical 
hydrogenous  diffracting crystal such as pentaery- 
thritol (C~oH2408 called P E T  here), neglect of coher- 
ent and incoherent  a t tenuat ion at 10 keV yields an 
error of 24°/'0 in the a t tenuat ion coefficient, while ~'  10 
neglect of incoherent  a t tenuat ion gives an error  in 
calculated structure factors and ~ values of 12%. This ~- 
affects calculated intensities and alters profile shapes .g_. 
and penetrat ion depths of radiat ion into the crystal. 

o~ 
For  inorganic crystals of med ium-Z  elements such as ' 1 

i/1 silicon, this effect is negligible at up to 20 keV but  
rapidly dominates  at higher energies. At lower en- ,~ 
ergies, it is significant for elements up to oxygen (2% ,_. °= 
change of~, at 10 keV). Interpolat ion and derivational 
errors of form and structure factors lie at this level, so 

"" 0.1 effects for elements with Z > 8 may  be neglected. 
Bonded hydrogen form factors are imprecise, enhan- 
cing corresponding errors, but  incoherent  contribu- 
tions to these are not  greatly affected by chemical 
bonding. 

0.01 

8.  F i n i t e  f la t  p e r f e c t  c r y s t a l s  

Constraints  of available comput ing time require that  
the 0 s and x loops are efficient. The greatest contribu- 100 
tion to C P U  time involves computa t ion  of finite fiat 
crystal reflectivities and t ransmit ted intensity ratios 
[r(0i,c), t(0i,c)] over the range of diffracting angles for 
A y ,  the calculated layer thickness. This is conducted 
outside the above loops and used in the summat ion  

10 
of reflectivity over 0s, x and the crystal layers. The 
procedure allows finite flat-crystal profiles and results E 
to be checked independently.  ~" 

o = 
A discrepancy existed between calculations using = 

the ' improved '  expressions given in assumption VII 
, 1 and those using the original complex form. This 

difference may be partial ly due to different evaluation o 
t J  

of circular functions, but is dominated  by the correc- g 
tion of Wilkins (1978). Magni tudes  of terms are cor- 
rect, but  the sign of the second term is often false 
(Wilkins, 1978; Suortti  e t  aL ,  1986). ~ 0.1 

In the face of this problem, 'unsimplif ied '  formulae 
(Zachariasen, 1945) were used, avoiding errors or 
approximat ions  introduced in further modification of 
the formulae. The power ratio of the diffracted wave 
at the incident surface is 0.01 

0 
P n  

- (1 / [bJ ) ( In / IG)  PG 

= ( 1 / I b l ) l [ x _ x + ( c _  - c + ) ] / ( c _ x _  - c+x+)[ 2 (22) 

and that  of the t ransmit ted beam at the exit surface 
n "r = t o is 

pO i o 
- - I E c _ c + ( x _ - x + ) ] / ( c _ x _ - c + x + ) l  2 (23) 

PG IG 

/ 
t 

Hydrogen, Z = 1 

. .° 
.° 
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Fig. 4. Attenuation cross sections for (a) hydrogen and (b) carbon, 
in cm 2 g- x, versus photon energy from 0 to 20 keV. Upper curve 
( ) gives total attenuation cross section, p = z + a¢oh .... t 
+tri.coh .... t; the middle curve (-----.) gives the sum of 
scattering contributions, omitting photoabsorption, equal to 

- z; the lower curve ( . . . . . .  ) gives the incoherent scattering 
cross section omitted in previous applications of the theory. 
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with 
c_+ = exp [(-2rci6o_+)/(2~0)] (24) 

~o-+ = ½[~'o - z + (q + z2) ~/2] (25) 

x-+ = [ - - z  + (q + z2)l/2]/(~aC ) (26) 

for the two internal incident waves and two inter- 
nal diffracted waves 'Do_+'. These formulae are as 
computationally efficient as the reduced version. 

Erola et al. (1990) and Popovici et al. (1988) include 
the correction of Wilkins, showing qualitative agree- 
ment with integrated reflectivities. Experimental and 
calculated profiles show relatively poor agreement, 
especially in the Laue case. The Bragg case shows a 
profile broadening (and shift) of experiment compared 
with theoretical results, as would be expected from §11 
below. 

9. Assumptions of complex finite fiat perfect crystal 
formulae 

Zachariasen's (1945) derivation assumes that the dif- 
fracting crystal is a linear isotropic dielectric, so only 
applies approximately to crystals such as barium 
fl-borate, calcite or aluminium. Corrected finite per- 
fect crystal formulae involve assumptions that the 
incident wave is infinite and planar and that the 
crystal surface is planar. The plane-surface assump- 
tion is not theoretically valid for X-rays since wave- 
lengths are equivalent to the atomic separation and 
the surface should be periodic in space around the 
nuclei and electron clouds (James, 1963; yon Laue, 
1949; Ewald, 1916). However, the simpler assumption 
represents an 'average' surface and results appear to 
agree with experiment. 

A condition for the validity of the plane-wave 
approximation (that the angular width of a coherent 
incident wave at the surface be less than the angular 
width of reflection) is not satisfied. The latter is about 
10 -s rad while the former is commonly 10-4 tad  
but in the case of the SS1 instrument used is about 
0.1 rad. The entire range of diffracting angles (and 
wavelengths) is illuminated with coherent radiation 
and in principle interference is possible between all 
internal diffracting waves for each of these angles, the 
fields superposing in the crystal. Kato (1960) showed 
that wave bundles do not interfere, except for crystal 
regions close to the incident surface. Thus, Pendel l~-  
sung interference phenomena relating to non-parallel 
diffraction vectors, which would occur in plane-wave 
theory, do not normally occur. Integrated intensities 
appear essentially identical for spherical- and plane- 
wave theories. 

10. Application to PET 002 

PET is a crystal often used in diffraction studies over 
the 1-7 A, range but deteriorates with age or strong 

X-ray irradiation, is soft and readily deformed and 
should be stored in a desiccator (Burek, Barrus & 
Blake, 1974; Burek, 1976). It deforms plastically under 
stress, but has the advantage of a high integrated 
reflectivity. The crystallographic space group has 
been reported as 14 (Eilerman & Rudman, 1979). 
There are 42 atoms (2 molecular units) in the unit cell. 
Lattice constants for this (tetragonal) space group 
have been reported as a = 6.10(1), c =  8.73(1)A 
(Frolov, Vereshchagin & Rodionov, 1962). 

This latter figure would imply a 2d spacing for the 
(002) plane of 8.73 (1) ]k, of low precision. Other evalu- 
ations of the spacing gave 8.742 A, (Burek, 1976) and 
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Fig. 5. Calculations using the equations of Cole & Stemple (1962) 

for infinite fiat perfect crystals of PET 002 for various orders of 
diffraction for 7.2 A/n, orders n = 1 to 5, for (a) z polarization 
and (b) a polarization. PH/P o VS 0, 0~ = 0.968779 rad using 
2d = 8.7358 A,. 
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8.757 A (Eilerman & Rudman, 1979); the latter pro- 
vided atomic positions in the unit cell, enabling form 
factors and structure factors to be evaluated. Dis- 
crepancies between measurements could imply either 
that the degree of perfection and deterioration of 
typical PET crystals covers this range or that these 
results were of limited precision. This imprecision 
could give a large uncertainty in derived wavelengths. 

A precise study has been made of the thermal 
expansion of the 2d spacing for this plane (Hall, 1980) 
yielding the value of 8.7358 (6)/~ at and near 291 K, 
which is inconsistent with the result of Eilerman & 
Rudman (1979) but consistent with other measure- 
ments. We take this as the true value and correct the 
lattice constant in the structure accordingly. 

The particular crystals had tolerances quoted by the 
suppliers of 0.40 + 0.05 - 0.02 mm for the thickness 
and ___ 5" for the parallelism of the diffracting planes 
to the surface. These should be conservative estimates 
and may also be used as an upper limit on the mosaic 
angular spread. The thickness uncertainty will be seen 
to be significant in the subsequent article, including 
possible variation of thickness along the crystal. 

Fig. 5 displays calculated profiles for infinite flat 
perfect PET 002 crystals diffracting in orders n = 1 to 
5 corresponding to 7.2/~ in the first order. They may 
be compared with finite fiat perfect crystal calcula- 
tions using (22)-(26) in Fig. 6, where the crystal 
thickness is defined by the curvature and A y  = 2. 
Similar results are obtained for a-polarized radia- 
tion, with thicknesses (from A y  = 2) of 59.8, 10.1, 
8.74 and 6.69 I~m for orders n = 1 to 4. 

Deficiencies of models used previously for differ- 
ential Lamb-shift measurements are detailed else- 
where (Chantler, 1990); they are dominated by 
problems in estimating curved-crystal depth-penetra- 
tion shifts from infinite fiat crystal calculations. No 
thermal parameters were used in the previous model 
since none were reported in the structural determina- 
tion of Eilerman & Rudman (1979). Isotropic param- 
eters for C, H and O atoms do not vary greatly 
between chemical species, so mean values of flll = 
fl22 = f l33 = 0.0084, fl,2 = fl13 = f l23  = 0 . 0 0  for C, 
with B = 3.2 and 1.0 ~ 2  for O and H, should be 
accurate to 10% when used in 

F(hkl ,  room temperature) = F(hkl,  T = 0 K)f0, 

f0 = exp [--  B/(Zd) 2] -- exp ( -  n 2 ~ flijhihj), (27) 

where hi,E, 3 denote H, K, L, 2d denotes 2d(OO2)/n and 
n is the order of 002 reflection used. This decreases 
intensities of higher-order reflections with respect to 
first-order diffraction (increasing depth penetration) 
and with respect to Fooo (increasing the effect of 
incoherent attenuation). 

11. Breakdown of the model 

The finite flat (perfect) crystal profiles calculated prior 
to ray tracing are shown in Fig. 7 for the first three 
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2nd order 

~ t order 

3rd order ~ 

. . . . .  

0.96850 0.96898 0.96946 
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Fig. 6. Plot of PH/P o versus 0 from calculations for first- to 
fourth-order ~-polarized radiation following (22)-(26) for finite 
fiat perfect crystals of PET 002 corresponding to 7.2/~ for order 
one. Note the Pendell6sung oscillations, especially in higher 
orders, in contrast with Fig. 5. Crystal thicknesses are 141, 12.2, 
9.91 and 7.59 gm, orders 1 to 4 (see text). 
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Fig. 7. Logarithmic plots of Pn/P o versus diffraction coordinate y 
for finite flat perfect PET 002 crystals using a thickness corre- 
sponding to Ay = 2 (following Caciuffo et al., 1987) revealing that 
higher-order radiation involves large interference terms between 
such layers. 
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orders of diffraction from PET 002 in both polariza- 
tions. Profiles are plotted on the diffraction coordinate 
(y) scale, calculated using layer widths corresponding 
to 2Rz = 300 mm. They show that profiles for differ- 
ent radiation and polarizations could vary in widths 
(FWHM) on the y scale from F(y)= 2 to 433! In 
addition, these values corresponded to layer thick- 
nesses from 3.7 to 140 lam. It is therefore clear that 
several assumptions of the above model are false. 

If the curvature c oc 1/R is large, each layer for 
Ay = 2 will be very thin, so only a small amount of 
diffraction will occur from each crystallite. There will 
be relatively few atomic layers providing the inter- 
ference for the sharp 'Darwinian'  profile edges, so that 
for all crystals diffraction will occur over a wider range 
of angles. Effective layer thicknesses arise from the 
relative importance of absorption of different polari- 
zations for the same Ay, the range being to-~ 
2Rz [F(y)Clbl~/21¢'nl/(b sin 20B)] 2. In the case of PET 
002 diffraction, first-order lines show F ( y ) ~  2.5 but 
third- and fourth-order lines show F(y) ,-~ 12 to 100. 
This is consistent with the curvature for the third- 
order lines being of the order of 60, fourth-order lines 
having c ~ 48 to 170 ('strongly bent') while that for 
first-order lines is 0.11 to 0.0285 ('near pefect') for the 
same bending radius (2Rz = 300 mm) (cf CMRB). 

Thus, the assumption of Ay = 2 to account for 
interference effects is false, so a thicker layer must be 
used and the assumption that y is single-valued for a 
given layer is also false (regarding both diffracted 
intensity and depth penetration). 

12. A new model 

The source parameters of ~3 and 5 remain as de- 
scribed above. Any other source geometry may re- 
place that given therein. The main features of the 
model in §2 are corrected and given as the following 
(see Fig. 8). 

(I) A curved crystal is considered to be oriented 
with respect to a monochromatic incident-beam ele- 
ment from the source so that the deviation from the 
y = 0 diffraction 'peak'  at the crystal surface is y(0). 
The curved crystal is divided into crystallites or 
lamellae of equivalent thickness Ay o, where Ay o also 
corresponds to the width of the diffraction curve F(y) 
for the fiat crystallite. 

(II) The condition - A y o / 2  < y < + Ayo/2 defines 
the range of the fiat crystallite diffraction peak, includ- 
ing finite thickness and order effects. This region 
(region 2) corresponds to a volume of the curved 
crystal in which coherent diffraction from different 
parts of the crystallite is significant. It is less sharply 
defined than in the earlier model, but may be assumed 
to diffract X-rays as a perfect crystal of this thickness, 
having the orientation of some middle plane - that is, 
- A y o / 2  < y < + Ayo/2. 

(III) Regions 1 and 3 are considered as an ensemble 
of perfect crystals, each having a thickness corre- 
sponding to Ay = Ay and a misorientation Ay o with 
respect to its neighbour. The midplanes of each crys- 
tallite maintain the same orientation as in the real 
crystal, but so must the other values of y providing 
contributions to the reflectivity in the crystallite. By 
analogy with §§2 and 4, the model is not composed 
of mosaic blocks (it is not a model of imperfect crystals 
of finite thickness and angular misorientation dis- 
tribution), nor is it composed of a mean of blocks 
projecting from or into the surface (the surface is 
assumed to be planar and atomically perfect). It is also 
not composed of a mean of half-sized blocks and 
subblocks filling the 'gap'  to the surface (problems of 
absorption and scaling), nor is it composed of several 
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~ = 3 . 0  

y = - 8 . 5  
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y,,=y(layer surface) closer to peak 
=5.5  (e.g.); 
t,--t(y,1), rl=r(y,,) 
assuming Ay=Ayo(=3) 

(b) 

Fig. 8. (a) New model, showing separation of crystal into curved 
lamellae of equal thickness dyo with continuity from the surface. 
y~, ri, t i and the depth penetration for each layer are given by 
(b) and in the text. The Darwin curve (lYl < l) and the dominant 
contribution to diffraction (arising from l Yl < 1.5) are split be- 
tween layers 4 and 5. (b) Division of the lamellar unit into 
four regions for the calculation of the mean values of y, r, t and 
d. Each region is dy = dyo/4 in thickness, with r i ,  t i  calculated 
using dy = dy o to include interference from adjacent regions and 
weighted as given in the text. Diffraction in the layer shown is 
dominated (in the low-absorption limit) by the fourth region, 
yielding a relatively large mean penetration depth. 
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different regimes where various layers or processes are 
dominant (the suggested model of §4, suffering from 
continuity problems). 

Instead, the model represents the crystal as com- 
posed of lamellae of finite curved crystallites so that, 
wherever diffraction occurs in the crystallite, the loca- 
tion of relevant planes will agree with those of the 
real (perfect) crystal. Each crystallite has the thickness 
on the diffraction coordinate scale as given above and 
the surface layer varies from y = y(0) to y = y(0) + 
Ayo. At the peak this may neglect some interference 
effects but, in all cases and especially at the surface, 
the thickness and location of layers follows that of the 
crystal. Much of this omission is redressed in (VIII) 
below. 

(IIIa) Reflectivity and transmission ratios of the 
finite curved crystallite are given by those of the 
equivalent fiat crystaUite. Lattice positions will be 
deformed from their unstressed values and form fac- 
tors are restricted and directed by this curvature. The 
consequent change of 2d spacing is primarily tangen- 
tial to the surface and of maximum magnitude 
-T/(4Rz) at the surface (being equal and opposite 
at the rear face). A naive estimate of the corresponding 
elongation of spacing normal to the surface (to reduce 
the apparent density increase) would be the square of 
this fraction. For a typical crystal thickness of 0.1 to 
0.6 mm and 2Rz value as low as 300 mm, this 2d 
correction lies below the 1 part in 106 level (less than 
the uncertainty from a fluctuation of 1 K and less than 
most quoted lattice-spacing uncertainties). Mosaic 
crystals, with introduced dislocations and phase 
boundaries to reduce the stress, have even smaller 
shifts. 

Use of flat-crystal formulae neglects the smooth 
continuous change of phase through the crystallite. 
This is given from (11) where d is replaced by do (the 
minimum of the lameUar thickness and the mean 
penetration depth) and the path length is compared 
t o  Sj ,  flat = do/s in (O-  (Xplane). The phase of internal 
waves across the unit changes from that for a fiat 
crystal by approximately 

Ago = 27r d2/[(2Rz + to)2 sin (0 - 0~plane) ] 

x [1/sin 2 (0 - -  t~plane) - -  21-] 

-- 4rcd2/(2Rz 2), (28) 

where the latter approximation holds to a factor 
of 2 for 0 > 3 6  ° (i.e. for most of the range of the 
current spectrometer). For 2Rz -- 300 mm, 2 -~ 7.1/~ 
and do -~ 1 ~tm, the phase change through the diffract- 
ing region is negligible. For higher-order radiation (in 
general), the phase shift rises to 2re (e.9. for 2 ~- 1.78/~ 
and d o ~-7 ~tm). This supports the assumption of 
incoherence between lamellae, although interference 
terms in a lamella from the curvature may approach 
significance in some cases. 

The phase change is significant for strong curva- 
tures where, however, real thicknesses to are much 
reduced and the reflectivity profile is low, smooth and 
wide. Locations of Pendellrsun9 peaks may shift 
slightly but the effect on all reflectivities should be 
small. So long as the crystal curvature is small com- 
pared with the scale necessary to superpose wave 
fields, the deviation from the true periodicity is small. 

(IV) The reflectivity of the set of monocrystalline 
lamellae so obtained may be calculated from the 
energy balance as discussed in §2, but with layers 
of thickness given by Ayo with diffraction coordinate 
y given as discussed in (VIII). 

(V) Owing to the curvature and the 'sharp' drop 
of reflectivity outside the -Ay/2  < y < Ay/2 region, 
multiple diffraction is neglected, since adjacent crys- 
tallite wave fields are incoherent and reflectivity out- 
side region 2 is negligible. Therefore, layers may be 
treated independently and the diffracted power from 
the surface may be given by (1), where S~ is now given 
by (12). 

Profile tails are affected by the assumed non-inter- 
ference between lamellae adjacent to the peak diffract- 
ing unit but dominant contributions to the peak and 
10th-90th percentile regions are given to high accu- 
racy. Mosaic phase shifts from dislocations etc. yield 
the model exactly by eliminating coherence between 
crystallites. 

(VI) For a given surface (or first-layer) orientation 
y(0), the orientation of the surface of the jth layer y~ 
is given by 

y = y(0) + ( j -  1)Ay 0 (29) 

and depth penetration etc. to this surface is as given 
in §4. 

(VII) For a given orientation yj,~ and thickness Aj 
of the ith element of the jth layer, it is assumed that 
the reflectivity and ratio of transmitted to incident 
powers for the layer j is given by general G-floating- 
format double-precision complex finite-crystal formu- 
lae [(22)--(26)]. These equations give an estimate of the 
X-ray diffraction pattern R = R[y(0)] for the curved 
crystal. 

(VIII) The crystallite may yield a large uncertainty 
in evaluation of depth penetration and reflectivities 
owing to variation of r and t with y when either the 
crystallite thickness is macroscopic (to > 30 pan) or 
when there is a large variation of y from the front to 
the rear surface of the crystallite. When y(0) < <  - A y  o 
and absorption is small, reflectivity arising from the 
rear of the crystallite may be several orders of magni- 
tude larger than that from the front surface and may 
give a corresponding depth shift. For y (0)>> Ay o, 
the front surface will be dominant by up to several 
orders of magnitude. Near the peak, estimates should 
relate to the peak height and FWHM of the crave 
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and not to front or rear surfaces (which may have 
10% of the peak reflectivity). 

A given depth in the curved crystallite is here 
assumed to contribute a reflectivity (at the crystallite 
surface) equivalent to a finite flat crystal of the crystal- 
lite thickness, multiplied by the square of the transmis- 
sion loss to that depth. The estimate of transmission 
loss is precise, since transmitted power ratios are 
smooth functions. Reflectivities do not scale unambig- 
uously with thickness but absorption, incoherent scat- 
tering and diffracted transmission all scale appropri- 
ately to first order. The square of the transmission loss 
is required [versus t exp (-/~Sj)], since interference 
still occurs in this region for the diffracted beam. The 
use of the full thickness in this estimate includes most 
interference effects from adjacent regions above and 
below the given depth and hence redresses the neglect 
of interference from adjacent crystallites. This estimate 
may be justified by consideration of particular ex- 
tremes, as discussed elsewhere (Chantler, 1990). 

Summation over four depth elements, with Yl = 
Ysurfaceoflayer, Y2 = Yl + Ayo/4, . . . ,  and r i and t~, the 
values for the flat crystallite of thickness Ayo, yields 
mean values of crystallite reflectivity ?, transmission 
ratio t- and diffraction coordinate y given by 

- {=  t /n, ~ = r iwi  wi  ' 
i=o i=0 l i = O  

/~_, i-I (30, 
-~- H t2/n = y i w i  Wi, Wi ~j , 

i=0 i=O j=0  

where n = 4. The difference between ~ and Yl then 
provides an additional depth shift, while the reflec- 
tivity and transmission for the crystal are derived 
using (IV) and (V). 

The value of d derived on this basis is insuffi- 
ciently precise for many first-order lines. Large ab- 
sorption leads to only the first layer contributing to 
the reflectivity. Further, this layer is commonly mac- 
roscopic (up to to = 200 gm) even if Ay = 2 for the 
crystallite, so division of the layer into only four 
elements yields an uncertainty in d commonly 

___ to/20, if averaging is accurate to 20% of the depth 
difference between adjacent regions. This uncertainty 
must be reduced by increasing the number of regions 
involved. Layers where j > 2 and I Yjl > 5Ayo con- 
tribute several orders of magnitude less intensity than 
the peak regions and are ignored. A cut-off where all 
slices x of the source have contributed their peak 
reflectivities is also imposed. 

Details of the computation of finite crystallite 
profiles to convergence of precision and of resulting 
diffraction widths F(y) with Ay o finite crystallite 
values are given elsewhere (Chantler, 1990). The asym- 
metry parameter b is recalculated from (6) for each 
angle Oi,¢, from which the equivalent thickness t o for 
the given Ay (initially equal to 2) may be calculated. 

Equations (22)-(26) are used to generate r(O) and t(O) 
over the resulting range of 0 and Ay, with additional 
values beyond this range computed for 

--t0mi" l Oinc(i=l_lO ) -- I-Omaxf) ~- 2( i -2)12(Omaxf  - -  Ominf ). (31) 

In the main calculation, for given Os, x and crystallite 
layer, there will be from 1 to 60 regions (or depths) 
defined for the crystallite, each of which will define a 
given Yi and 0i for the grazing-incidence angle to the 
ideal crystallite. If any value of 0i lies outside the range 
of the flat-crystal profile, limiting values are used: 

r i : r ( ~ 0 m a x f ~  + 16 0 mi n f ) )  "~ 0, 
~ ( 0 m i n f .  ~ -- (0maxf -- 

t i = /?(~Omaxf~ + 16 (Omaxf --  Ominf))  '~ 1. 
~,(Omin f ~ -- 

(32) 

13. An example 

For 7.2 •/n radiation diffracting from PET 002 crystal 
planes in nth order, n = 1 to 5, with a crystal radius 
of 2Rz = 300 ram, a polarization yielded mean pene- 
tration depths of 1.44, 30.6, 94.4, 150 and 174 gm (Fig. 
9) compared with the thicknesses of Fig. 6 and 7. 
polarization gave mean values of 0.896, 28.1, 93.5, 150 
and 174 gm. Ay o finite crystallite widths may be 
compared with resulting diffraction widths F(y) on the 
plot. All higher-order radiation was limited by the 
crystal thickness and gave adequate precision after 
division of each layer into four regions. These mean 
depths approach the zero-absorption limit of 200 l.tm 
for high order, n ~ oo. First-order radiation after a 
depth of 92.7 gm was 1.4 × 10-13 times the surface in- 
tensity. Hence, the surface layer dominates, requiring 
38 and 60 regions (a, ~) for adequate precision. 

These wavelengths correspond roughly to the 
Doppler-shifted Lyman ~-Balmer ]3 region in Fe 25 + 
The trend of Ayo and to with diffracting order is 
consistent for all iron lines computed for PET 002 
crystals, but the number of regions, mean depths, 
profiles and peak reflectivities vary considerably. For 
third-order Lyman ~ radiation (Doppler-shifted 
2 = 1.7947/~, 0 B = 38°), the crystallite thickness for a 
polarization is 4.82 gm, corresponding to Ay o = 56.9, 
with a mean depth of 135 p.m using four regions; 
first-order radiation at 2 = 5.4305/~, 0B = 38.4 ° gives 
crystallite thicknesses of 8.37 gm, corresponding to 
Ayo = 2.43, and 43.3 lam, corresponding to Ay o = 2.85 
(a, ~), with mean depths of 4.89 and 5.21 gm requiring 
4 and 17 regions, respectively. 

14. Allowance for photographic detection 

Laming (1988) has explained the shift of peak location 
on photographic emulsions due to emulsion penetra- 
tion by the radiation, which is energy dependent. The 



686 X-RAY DIFFRACTION OF BENT CRYSTALS IN BRAGG GEOMETRY. I 

10-1 

10-2 

10-3 

10-t. 
-11.1 -6.3 -1.6 3.2 7.9 

Diffraction coordinate y 
(a) 

//7" 

/ 
s 

; 

12.7 

T 

10 -1 

10-2 

10-3 

10-~ 

10-s 

10-6 

10 -7 
-15 

2nd order o' polarization 
n polarizat ion 

1st order 
o' polarizat ion 

# 
i 

t 

t 

1st order / 

I 

-11 -7 -3 1 13 
Diffraction coordinate y 

(b) 

Fig. 9. Logarithmic plots of (a) Pn /P  o and (b) T versus diffraction 
coordinate y for finite flat perfect PET 002 crystals using thick- 
nesses following §12, as given in Fig. 6; cf Fig. 7. Lamellar 
Ayo effective thicknesses for orders n = 1 to 4 are 3.24, 7.49, 19.8, 
27.6 (o-) and 2.73, 3.23, 8.08 and 11.2 (~) in agreement with 
diffraction FWHM F(y) to 10%. 

geometrical equations referred to in ~3 and 5 define 
the location Y~z and incident angle of radiation on the 
Rowland circle (i.e. on the emulsion surface). If elec- 
tronic detection normal to the incident angle was 
used, the detector function would be symmetric and 
yield no additional shift. In our case, with a front 
emulsion thickness of 13 lam and absorption and scat- 
tering coefficients given by the incident energy and 
composition of the emulsion (AgBr + gelatin), the 
detector function is an asymmetrical exponential. This 
is depicted in Fig. 10 and leads to a larger shift for 
higher-order radiation, calculated from 

temulsion/Sin 0 

A Y~z = ~ z exp (-- pz) dz cos 0 
0 

x exp (-/~z) dz . (33) 

For Fe Lyman aa radiation, Doppler-shifted 
(fl-~ 0.136) and diffracted in fourth order (OB ~--55 °) 
by PET 002, this shift is 3.551ma for /~mm-- 
0.062 ~ n - 1  and a crystal radius of 2 Rz = 300 mm; 
for Balmer/3 in first order, the shift is 0.656 lam with 
#fi~m = 0.832 ~tm-1. These values are doubled for the 
third-order Lyman a region (0B -~ 38 °) and larger for 
the germanium Lyman c~ experiment. They are small 
but important effects. 

15. Method for testing; selected perfect-crystal profiles 

The complex nature of the above equations, explicit 
mathematical assumptions and finite-element summa- 
tions require testing. This is partially achieved by 
mental calculations. Results for infinite fiat perfect 
crystals using corrected formulae may be compared 
with standard references (Zachariasen, 1945; CMRB), 
as well as with finite fiat or curved perfect crystal 
parameters and profiles. 

Control parameters allow calculation of infinite fiat 
perfect crystal profiles, finite curved perfect crystal 

Rowland Circle 

~ e m u l s i o n  
' t ~  

, / four th  order 
radiation 

Ideal ~ [  l ~ j ~ ~ . . ~  first order 
electronic 7 = I/ I ~ radiation 
det ect°r I I ~  ~ - ' -  I Yiz 

Fig. 10. Schematic diagram for photographic depth penetration and 
detector responses. 
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values or finite curved imperfect crystal results (see 
paper II), with or without the photographic-detector 
response for Kodak DEF film. Profiles with respect 
to source angle (0~ad), grazing output surface angle 
(0~ ad) and detector location on the Rowland circle 
(Y~z pm) are calculated for each polarization; also 
included are surface values y(O)(Os) and dominant layer 
contributions yj(max)(02), yj(max)(Y/z). 

Four tests of theory and programming have been 
implemented (Fig. 11). One sets the number of steps 
over the source width x equal to one (treating the 
diffraction as arising from a point source) and sets the 
number of crystal layers for each 0~ and for x = 0 as 
one. This tests geometric focusing and defocusing and 
interpolation and finite-precision routines for 0~. The 
second uses a point source (x -- 0, only a single step) 

(a) 

(b) 

S 

(c) 

(d) 

Fig. 11. Testing procedure for implementation, precision, continuity 
and shape of profiles. (a) Focusing, interpolation and finite preci- 
sion tests with a point source looping over angle of emission 
(Os) and interacting with the surface layer only. Ouput profile 
scales are labelled. (b) More complete focusing and geometry tests 
using the finite-source distribution but interacting with the sur- 
face layer only. (c) Use of a point source but treating all diffracting 
layers, comparable to earlier models. Deeper layers for a given 
incident ray have the same Oout value but do not yield the same 
arc lengths Yiz relative to the crystal pole. (d) Looping over the 
source location x, the emission angle 0~, the number of diffracting 
layers (curved crystallites or mosaic blocks) and the number of 
regions in each layer. 

but treats all layers and may be compared with earlier 
curved-crystal models (CMRB) and with flat perfect 
crystal calculations. The third treats all steps of the 
Gaussian source width but only the surface diffraction 
layer, providing a more complete focusing and geom- 
etry test. The final profile loops over full ranges, 
giving diffraction and focusing results relevant to our 
study. 

The standard example has been diffraction off 
2Rz -- 300 mm PET 002n crystals of 7.2 A/n, n = 1 
to 4; plots of corresponding perfect-crystal profiles are 
given in Figs. 12 and 13. Unlike infinite crystals, there 
are additional effects, leading to Pendell6sung oscil- 
lations. Unlike finite flat crystal profiles, the full depth 
of the crystal does not contribute equally to diffrac- 
tion. Unlike mosaic crystals, the block size depends 
on curvature and the rate of change of beam angle to 
the lattice; the orientation of lamellae is also well 
defined. 

Curved-crystal profiles are generally asymmetric 
and not centred on y(0)= 0, even when equivalent 
flat-crystal profiles are symmetric. Reflectivity is dom- 
inated by that of the first layer for y(0) > + 1 since Yi 
increases with depth, away from the diffraction peak. 
Conversely, y(0) < - 1 has a large r~ reflectivity for the 
layer where y j -  0. Thus, multiple layers may con- 
tribute and asymmetric contributions from deeper 
layers of the crystal follow a roughly exponential 
decline. 

Results display expected effects of geometric de- 
focusing, depth penetration, finite source widths and 
finite precision on profiles versus Os, 02, Y/z, y(0) and 
y~, and the linearity (or otherwise) of the last two 
parameters compared with the first three. Crystal 
curvature often yields the dominant contribution to 
depth penetration, which is the main broadening and 
diffraction correction for higher-order radiation. 
Final profiles on the 0 2 scale indicate the effect of finite 
precision in the ray-tracing exercise (Fig. 12). With 
Johann mounting, the finite source has a significant 
qualitative effect, while the effect of finite precision, 
observable in some profiles, is small (Fig. 13). The 
range of profile asymmetry, width and diffraction shift 
with order and polarization is indicated by Fig. 13(d) 
for the current geometry, compared with Figs. 13(b), 
(c) for a point source. 

Plots of scaled reflectivity against the y coordinate 
at the crystal surface (Fig. 14) allow comparison of 
profile tails and Pendell6sung oscillations with the 
literature. The finite source and precision lead to 
sawtooth oscillations as the dominant diffracting la- 
mella shifts to deeper layers. This is clarified in Fig. 
15, where the y coordinate used relates to the lamella 
giving the dominant reflectivity component for a given 
Y~z location. For the monotonic behaviour of point- 
source surface-layer diffraction, these plots are 
smooth well defined functions (cf Fig. 9a). This 
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remains true for first-order profiles in Fig. 15, but  
second and deeper layers are dominant  for certain 
regions of R'(Y/=) - namely when y(0) < < 0. Point-  
source calculations demonst ra te  Pendellrsun9 oscilla- 
tions with no observable precision limitation. 

1 
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10-6 

0.9680 

1st order. 

OH (tad) 

(a) 

10-6 

0 . 9 7 0 0  

' I i i i i 

0 . 9 6 8 0  0 . 9 7 0 0  

0 2 (rad) 

(b) 
Fig. 12. Finite curved perfect crystal profiles for PET 002n, 7.2 A/n, 

n = 1 to 4, n polarization, 2Rz = 300 mm: Reflectivity versus 
(generatrix) exit angle at the crystal surface 02. This is similar to 
plots versus incident (Bragg) angle. (a) Point-source surface-layer 
test showing narrow profiles, Pendellrsung oscillations and simi- 
larity to fiat-crystal profiles. (b) Finite-source multilayer profile. 
Profiles have large imprecision in finite-source single-layer tests, 
much improved for higher orders by inclusion of multiple layers. 
Asymmetry of profile tails is due to asymmetryof corresponding 
point-source profiles. Point-source single-layer results shown 
integrated reflectivities for higher orders increased dramatically 
by reflection from individual deep layers, and Pendellrsung oscil- 
lations unaffected by precision. Rays are focused towards the 
peak, so peak values are greater than 1; the vertical axis is 
not reflectivity (it should be normalized by the result for a perfect 
X-ray mirror to yield reflectivities). The finite source induces no 
broadening, but adds a precision-based 15% oscillation for 
first-order radiation. Results for tr polarization are analogous. 

Profiles plotted against 0 2 and Y~= correspond to 
source emission of 2000 steps of height unity emitted 
into the covered angle. They thus correspond to the 
number  and location of photons  focused, for a total  
source strength of 4000rr/A Os photons  in 2~z, where A 0s 
is the covered source angular  range. For  the absolute 
source intensity distr ibution from the photon  flux on 
the film, the solid angle involved may  be derived from 
the path length B X Y Z F  = B X  + S k + Ski, + xline to 
the emulsion from the mean source position. This 
gives Y~=(0i,¢, 0A, 2Rz, Rzf, Cx, ~1). The first two 
parameters,  together with B X ,  are fixed by geometric 
relations between spectrometer  parameters  (Chantler, 
1990). Profiles corresponding to previous theoretical 
derivations are shown in Fig. 14, a plot of R versus 
y(0) from the 02 profiles, and, in Fig. 12, a plot of R 
versus 02. Previous derivations neglect finite-source 
convolutions. Profiles including this and correspond- 
ing to observed spectra are given by Fig. 13(d). 

Profiles show the same qualitative behaviour  as 
earlier references which, however, omit  corrections 
given above and cannot  be directly compared  to (real) 
profiles with a finite source. Other  angles and orders 
display behaviour  in qualitative consonance with 
ranges presented in CMRB.  This does not  imply 
adquate  precision and formulat ion for other  fines for 
which diffraction corrections are required. In calcu- 
lation of corrections for all in-beam source-calibration 
lines, first-, third- and fourth-order  reflection profiles 
were plotted and considered in detail at the third- 
order Lyman  ~ region, and first-, fourth- and fifth- 
order reflections near the Lyman  ~ and Balmer fl 
regions were considered. This covers extremes of the 
region densitized on the film. Lines near  45 ° were also 
tested. 

16. Output parameters and example values for 
PET 002, 008 

Outpu t  files list wavelengths, integrated reflectivities 
R and refractive-index shifts for each polarizat ion 
in terms of either C~',z= Y~=-Y~=,o or C o =  
1 - n2/(2d sin 0'i,c). Here, Y~,. o is the film-surface loca- 
tion corresponding to a point-source Bragg-angle 
diffraction from the crystal surface (0o,t = 0, = 0 = 
0i,c) and 0~.~ is the value of 0in~ expected if a point-  
source crystal-surface Bragg-angle reflection led to the 
value of Y~z. Both values include refractive-index 
corrections and depth-penetra t ion corrections, but  
neither allows for the diffracting region lying off the 
Rowland circle, calculated separately and implicitly. 

Representative results are given in Table 1 for 
Fe 15+ ( f l=0 .136 ,  ( X p l a n e ~ - - - 0 )  Balmer r4  2s-4pl~2, 
2rest = 7.10054 A with Doppler-shifted 20 = 7.1671 A, 
0B = 0.96217rad,  and Lyman ~1 ls-2p3/2, ~'rest = 

1.77802 A, 20 = 1.79469 ,/~, OB = 0.964500 rad, dif- 
fracted in first and fourth orders from 0.4 mm thick 
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perfect PET 002 crystals. 2Rz = 300 mm and sw = 
1 mm are assumed, together with typical parameters 
defining the source location. Scales given correspond 
to the four output profiles (0s, 02, Y~z for the curved 
crystal and 0i,¢ for the finite flat crystal). The Y~z scale 

is given relative to the point-source surface-Bragg- 
angle reflection, so indicates diffraction shifts. 

Smoothness and consistency of profiles is checked 
from output ranges, quartiles and peak locations. 
Errors in ranges or approximations could be large for 
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Fig. 13. As Fig. 12 but profiles are plotted against Y~= relative to the value for point-source surface Bragg reflection. Profiles show 
diffraction shifts by the discrepancy from Y0 = 0. (a) Point-source single-layer test, dominated by first-order profile and shift, show- 
ing the focusing of the Rowland circle (and the continuity of the calculation); g polarization, n = 1 to 4 plotted. (b) Point-source 
multilayer calculation, including large broadening and shift of higher orders due to depth penetration. (c) Linear plot of (b) 
including a polarization on the same scale, for first, second and fourth orders. Expected real profiles for PET 00(2n) finite curved 
perfect-crystal diffraction at 7.2 A/n, orders n = l, 2, 4, neglecting the finite source. (d) Finite-source multilayer results give smooth 
final profiles on the film (including emulsion shifts). Fourth-order diffraction is scaled by (40 x, 40 x) for {c) (re, a) and (10 x, 40 x) 
for (d). Widths are 76, 27, 133 and 126(2)rim for first-order g and a and fourth-order g and a radiation in (c), respectively, 
broadened to 76, 36, 140 and 142 (2) pm in (d). 
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particular polarizations and lines but would reveal 
themselves through these parameters or from full 
profile shapes. 

For  the above example, values of g for first-order 
tr and rc radiations and fourth-order tr and n radiations 
are - 0.296, - 0.103, - 0.0903, - 0.0317, respectively, 
while x = 0.0813 for first-order and 0.0136 for fourth- 
order radiation. Hirsch & Ramachandran (1950) and 
Cole & Stemple (1962) give simpler diffraction 
formulae relating directly to these parameters, with 
corresponding plots. The differences between the 75th 
and 25th percentiles for final calculations indicate 
the scale of diffraction, finite source and geometric 
defocusing, and show typical variation with diffrac- 
tion order. 

The shift of the peak (channel) relative to the Bragg 
reference position may be compared with mean shifts. 
This highlights profile asymmetries in opposite direc- 
tions for first- and fourth-order diffraction due to 
flat-crystal asymmetry and depth penetration, respec- 
tively, and indicates relatively small differences of 
means for different polarizations. Values of Co are 
derived from mean shifts on each scale. The three 
values differ: only those using the Y~z scale include all 
depth and defocusing effects. A relative error of final 
C~ '~ corrections indicates convergence of iterative cal- 
culations of Co from Cr, ~. The curvature c may be 
compared with that given by CMRB. 

The mean penetration depth d compares with flat- 
crystal and other estimates, and ensures that sufficient 

10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 

R' 

1 % 0  . . . . . . . . . . . . . . . . . . . . . . .  0 . . . . . . . .  2o 
y 

Fig. 14. Finite curved perfect crystal reflectivities R' versus the 
diffraction coordinate at the surface y(0) giving dominant con- 
tributions to the 02 angle profile. PET 00(2n), 7.2 A/n, orders 
n = 1 to 4, tr and ~ polarization, 2Rz = 300 mm. Point-source 
multilayer test showing first-order radiation unchanged from 
finite flat profiles, but reflectivities from higher orders increased 
dramatically by asymmetric reflection from deep layers; oscilla- 
tions derive from Pendell/Ssung effects and are not dominated by 
precision. This shows the continuity and smoothness of y(0) with 
02 and the precision. 

regions are used within each crystallite. The crystallite 
thickness to used in fiat- and curved-crystal calcula- 
tions is also given, to corresponds to Ay o in the curved 
crystal across the crystallite thickness, set to the finite 
flat-crystal diffraction width on the diffraction co- 
ordinate scale. 

Table 1 shows the grazing-incidence finite fiat crys- 
tal integrated reflectivity (Rc), the curved-crystal inte- 
grated reflectivities assuming a point source [R~/x=°, 
integrating over y(0) and R~ 'x=°] and the ratio of 
incident to diffracted powers over the range con- 
sidered with the finite s o u r c e  [R~/(Oma x --0rain) or 
R~ = 2re ~°'/t° for uniform emission into 2rcrad]. 
Mosaic calculations provide equivalent flat-crystal 
grazing-incidence integrated reflectivity Rm. Integrat- 
ed reflectivities for infinite fiat crystal calculations are 
equivalent to Rc, while R~ is relevant for the experi- 
mental geometry. Curved-crystal values R~ °° are equi- 
valent to flat-crystal values R c and Rm. This is close 
to R~ in all cases, but is much larger than flat-crystal 
R c values for higher orders due to depth penetration. 

polarization 2nd order "~ ~ Ist order 

I 
I polarization 3rd order 

,\ tY polarization 2nd order\~, i 

--- \ 

10-1 a polarization 3rd order ~. ~: 

•- --_ ~,.'_~.. _. _..'.~.~.--." 

i 1 1 
10_31 J 

-20  -16 -12 -8  - ~  0 l, 8 12 16 20 

Diffraction coordinate y~ 

Fig. 15. As Fig. 14 but plotted against diffraction coordinate Yz 
for the layer giving the dominant reflectivity component of Y~z 
profiles. The point-source single-layer test is similar to Fig. 9(a) 
but scaled for the focusing geometry. Here the scaling is the same 
and first-order profiles are unchanged but this multilayer calcula- 
tion shows clear migration of the dominant reflectivity from the 
first to second and deeper layers for second-order n-polarized 
radiation. This is accentuated for higher orders and dominant 
contributions to some regions of Y~z profiles arise from 13th and 
deeper layers. Large central regions of R versus Y.= 02 profiles 
are due to [Yl < Ayo/2, with each local peak corresponding to a 
different source element - so the profile steps from -Ayo/2 to 
+ Ayo/2 and then jumps back, until the tail is reached. 



C. T. CHANTLER 691 

Table  1. Summary of parameters for 2R = 300 mm,  T = 0.4 m m  PET 002 perfect-crystal diffraction 

See text and Appendix for variable definitions. 

Order, polarization 

1st, a 1st, rc 4th, a 4th, 

Parameter and scale 
20 (/~,) 7.1671 
On (rad) 0.96217 
9 -0.296 
tc 0.0813 
Difference between the 75th and 25th percentiles 
01,c, flat crystal (rad) 8.66 × 10 -5 
0~ (rad) 0.00442 
02 (rad) 8.34 × 10 -5 
Y~z (p.m) 37.1 
Peak shift with respect to Bragg location 
0i,c, fiat crystal (rad) 2.21 x 10 -4 
0~ (rad) 1.69 x 10- 4 
02 (rad) 2.17 x 10- 4 
Y~z (~tm) 70.0 
Mean shift with respect to Bragg location 
0~ (rad) 1.74 x 10 -4 
02 (rad) 2.11 X 10 - 4  

Y~z (lam) 63.7 

Co r'z correction (rad) 1.48 x 10 -4 
Yiz emulsion shift (lam) 0.656 
Curvature c 0.0285 

(Ixm) 1.47 
to (crystallite) (~tm) 42.8 
Regions per layer, N, 27 
Ayo 2.47 

Rc 6.19 x 10 -5 

R~ x=° = R~ (0.1 I~m) 1.58 
R~/' x = o = R~/ 6.90 x 10- 5 
R~ o 6.35 x 10 -5 

1.79469 
0.96450 

- o. 103 - 0.0903 - 0.0317 
0.0813 0.0136 0.0136 

2.409 x 10 -4 2.04 x 10 -5 1.88 x 10 -5 
0.00442 0.00442 0.00443 
2.417 × 10 -4 0.000446 0.000465 

76.2 143.4 144.4 

1.38 x 10 -4 1.42 x 10 -5 1.42 × 10 -5 
1.56 × 10 - 4  7.32 x 10 -4 7.29 x 10 -4 
1.45 × 10 -4 -8.5 x 10 -6 -2.2 × 10 -6 

54.3 - 14.1 - 15.7 

1.85 × 10 -4 7.69 x 10 -4 7.71 x 10 -4 
2.01 × 10 -4 -3.34 × 10 -4 -3.35 × 10 -4 

60.7 - 92.2 - 92.7 

1.41 x 10 -4 -2.13 x 10 -4 -2.14 × 10 -4 
3.55 

0.0286 48.0 48.0 
0.911 149 151 

136 6.83 7.56 
60 4 4 

2.73 29.4 11.4 

2.51 x 10 -4 1.10 x 10 -v 9.93 x 10 -v 
2.23 6.57 19.4 
2.81 x 10 -4 3.83 x 10 -6 3.23 x 10 -5 
2.59 x 10 -4 3.53 X 10 - 6  2.98 x 10 -5 

These  reflectivities a l low film exposure  to be re la ted 
to a cyl indrical ly  or  spherical ly  symmet r i c  p h o t o n  flux 
(and exci ted-s ta te  popula t ion) .  Widths ,  shifts and  
profiles on  the Y~z scale may  be c o m p a r e d  with da t a  to 
give in fo rma t ion  on  po la r iza t ion  and  mosa ic  char-  
acter  of inc ident  rad ia t ion  and  crystals or  to yield 
wave leng th  est imates.  

17. Further work 

The  mode l l i ng  and  theory  have  passed a series of 
c o m p r e h e n s i v e  tests. Exper imen ta l  c o m p a r i s o n s  for 
P E T  and  o the r  crystals are given in paper  II. Effects 
of  d e p t h  pene t ra t ion ,  cos ine- ra t io  var ia t ion,  use of 
complex  formulae,  app rop r i a t e  lamel la r  th icknesses  to 
accoun t  for interference,  divis ion of lamel lae  into 
mul t ip le  regions  and  inclus ion of i ncohe ren t  scat ter ing 
have  been  s h o w n  to be significant and  i m p o r t a n t  in 
the de r iva t ion  of diffract ion profiles for curved  perfect 
crystals. 

O t h e r  c o m p a r i s o n s  of  refract ive- index shifts in 
different orders  for curved  finite crystals led to prob-  

lems f rom the i n a d e q u a t e  na tu re  of  our  s t a t iona ry  
X-ray sources,  y ie lding p o o r  profiles with cen t ro id  
errors  of  pe rhaps  2 parts  in 10 4. This  is the  same 
m a g n i t u d e  as the cor rec t ions  and  relates to lines 
whose  wave leng th  cen t ro ids  are no t  well defined.  
Large  separa t ions  a long  the film be tween  s ta t ionary  
source and  b e a m  spectra  prevent  accura te  es t imates  
of shifts for fast b e a m  lines (since shifts change  wi th  
Bragg angle  and  energy) and  mus t  be cor re la ted  to 
m o d e l  es t imates  of  shifts in bo th  regions.  

F u r t h e r  tests shou ld  inc lude  direct  c o m p a r i s o n s  of 
profiles, shifts and  wid ths  to exper iment .  P rev ious  
exper imen t s  use double-crys ta l  techniques ,  convol -  
ving the profiles and  concen t r a t e  on in teg ra ted  re- 
flectivities for n a r r o w - b e a m  inc idence  of g e r m a n i u m  
111 and  qua r t z  101; these cond i t i ons  are not  direct ly 
c o m p a r a b l e  with our  exper imen ta l  a r r a n g e m e n t  or 
with cur ren t  i m p l e m e n t a t i o n  of theory.  In teg ra ted  
reflectivity is, in any  case, a p o o r  test. 
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APPENDIX 
Basic notation 

2: X-ray wavelength (in vacuo). 
d: crystal-lattice spacing (for index H). 
2Rz: crystal curvature radius along the generatrix (Rz 
is the Rowland-circle radius). 
0s: angle from source with respect to crystal pole 
(along the generatrix of the cylindrically curved crys- 
tal). 
0i,c: grazing angle of incidence on crystal surface. 
s t :  transverse angle of the incident beam with respect 
to the generatrix. 
01 = arcsin [(sin 0inc)/COS ~1] : component of 0inc along 
generatrix. 
0o.t: grazing angle of emission/reflection at crystal 
surface. 
0 2 = arcsin [(sin 0out)/cos ~1]: component of 0ou  t o n  

generatrix. 
O~k, k = 1, 2 , . . .  : grazing angle of incidence on kth 
lamellar surface. 
O,k, k = 1, 2 , . . .  : grazing angle of emission from kth 
lamellar surface. 
~pl,,~: (mean) angle of diffracting planes to the lamellar 
or crystal surface (along the generatrix). 
0 = Oik + %lane: grazing angle of incidence on crystal 
planes (see Caciuffo et al., 1987). 
O, = O,k -- %la,e: grazing angle of reflection on crystal 
planes. 
0B = arcsin 2/2d: Bragg angle. 

= 4(sin 0n - sin 0) sin 0B ~-- 2(0B -- 0) sin (20n). 
C: polarization factor [ = 1 for normal component (n 
polarization), or [cos 201 for a polarization]. 
b: (approximately) ratio of the discretion cosines 
(Vo, Vn) of incident and diffracted (reflected) beams 
relative to the normal to the crystal (lamellar) surface, 
~ ,  ~k~r: real and imaginary parts of the Fourier 
component of index H of 4n times the polariz- 
ability; related to structure factors FH by ~kn = 
-[e222/(nmc2)]NoFn; both parts are summed over 
real (imaginary) contributions from each scattering 
centre so may be complex, except for the H = 0 
(hkl = 000) component parts. 
e, m, c, No: electron charge, electron rest m~ss, velocity 
of light, Avogadro's number. 
to: crystal (lamellar) thickness (or penetration depth). 
/~: linear absorption coefficient. 

z = [(1 - b)/2]0o + (b/2)ct. 

q = C2b~1it1~tl. 

a = nto/(2Vo ). 

v + iw = (q + z 2 )  1/2.  

y = Re(z)/(lbll/2lCd/HI) 

= {[(1 - b)/2]~b + (b/2)~)/(Ibll/ZlC~/'HI): 
the deviation parameter. 

O = Im (z)/(Ibll/21C~'HI) 

= [(1 -- b)/2]C~/(IbI1/21CCHI). 

y(0): value of y at crystal surface. 

A --  rc lCO'~ I to / ( ,~ l~ ,o~ l l /~ ) .  

~o: power incident at the crystal surface. 
I~: intensity of the incident beam. 
po, i o, PH, Iu: power and intensity of the transmitted 
beam and of the diffracted beam of index H. 

RrH = I (PH/P~) dy = I rdy: 
integrated reflectivity on y scale. 

R°H = I (PH/P~) d ( O -  OB) 

~- [IC¢'HI/(Ibl 1/2 sin 20n) ] R~: 

integrated reflectivity on grazing-incidence-angle 
scale. 

n/2 

Rc = I r d 0 i n  e - -  r(Omaxf -- Ominf)/n: 
0 step = 1 

grazing-incidence finite fiat crystal reflectivity. 
+oo 

R~iX=° = I r dy = R~':'=°tSy/fi05: 
--00 

curved-crystal integrated reflectivity on the y scale, 
assuming a point source and neglecting the Gaussian 
spread. 

R~'X=° = ½ I r d0~ - -  r ( 0 m a  x - -  0 ra in ) / / ' / :  
0 step = 1 

curved-crystal integrated reflectivity on the 05 scale, 
assuming a point source and neglecting the Gaussian 
spread. 

2n 

R~ = ½ I I rP(x) dx d05 
0 x 
nl n2 

= E E rPs(x)(Omax-  O m i n ) / n :  
step0s= I s t e p x =  1 

curved-crystal integrated reflectivity on the 05 scale. 
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