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REVIEW ARTICLE

Systematic corrections in Bragg x-ray diffraction of flat and curved crystals
C. T. Chantler
School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia

R. D. Deslattes
Quantum Metrology Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899

(Received 14 September 1994; accepted for publication I August 1995)

Measurements of spectral wavelengths in Bragg diffraction from crystals often require refractive
index corrections to allow a detailed comparison of experiment with theory. These corrections are
typically 100-300 ppm in the x-ray regime, and simple estimates may sometimes be accurate to 5%
or better. The inadequacies of these estimates are discussed. Even with a possibly improved index
of refraction estimate, this correction is insufficient since additional systematics in the diffraction
process occur at or above this level. For example, asymmetries of diffraction profiles with
vr-polarized radiation or due to three-beam diffraction can approach the magnitude of refractive
index corrections for flat or curved crystals. The depth of penetration of the x-ray field inside curved
crystals, the shift of the mean angle to the diffracting planes, and lateral shifts around the crystal
surface are rarely considered but can dominate over refractive index corrections, particularly for
high-order diffraction or medium-energy x rays. Shifts and nonlinearities arise when diffracting
surfaces lie off the Rowland circle, and exhibit strong and rapidly varying angular dependencies.
Johann geometries with the source located on the Rowland circle should be avoided to minimize
profile truncation shifts from crystal ranges or minimum grazing angles, and to avoid extreme
scaling corrections. Other significant shifts are identified and illustrated, with functional relations
provided to allow an estimation of related magnitudes. The central concerns of this paper are the
effects on flat crystal diffraction and curved crystal diffraction in the Johann geometry, with a source
and crystal of variable dimensions and location. Experiments often interpolate or extrapolate from
calibration lines, so dependencies upon the diffracting angle are as important as the magnitude of the
corrections. These dependencies are presented in formulas and graphs. C 1995 American Institute
of Physics.

I. INTRODUCTION

X-ray spectroscopy was developed after the discovery of
x rays in 1895 by R6ntgen and the observation of their dif-
fraction by crystals by von Laue in 1912.1,2 The wavelength
dependence of the diffracting angle, and hence the possibility
of the spectroscopy of x rays, was demonstrated by Bragg in
1913.3'4

The crystal diffraction of x rays continues to yield the
highest resolution spectra in the x-ray regime, compared to
solid state and other detector technologies. The intrinsic flat
crystal resolving power can exceed Xh5&=100 000 for
single- or double-crystal combinations in particular perfect
crystal diffracting planes of various crystals.5 Experimental
arrangements with resolving powers of 1000-10 000 are
common across the x-ray range of energies. The realized
spectral resolving powers are often limited by natural or
other source widths, by (imaging) detector resolutions, or by
geometric defocusing, rather than by the diffraction width.

With this high potential resolution and a high peak dif-
fracting efficiency (approaching unity), the technique of
crystal x-ray diffraction has proliferated in crystallographic
studies, standard source calibration and measurements, syn-
chrotron radiation monochromatization, atomic physics tests,
and general experiments using accelerators, tokamaks, and

electron beam ion traps. This high resolution also enables
absolute measurements of the source profiles or wavelengths
to below the part per million level (ppm or &/X= 10-6).
However, this precision also requires the consideration of
systematics at this level.

X-ray diffraction theory has been developed by Darwin,
Ewald, Pins, Zachariasen, James, and others.6-11 Modeling
procedures for flat and curved crystal calculations have ex-
isted for some time.12 Most are designed for reflectivity or
profile shape determinations and neglect systematic shifts of
the Bragg peaks. Estimates of such shifts often derive from
the Bragg relation inside the crystal as compared to in vacuo
(that is, with and without refraction) and involve significant
approximations. 13,14 Although it is well known that the ap-
plication of these equations is approximate, the nature and
magnitude of these approximations are often poorly under-
stood or neglected.

These estimates are widely used by researchers using flat
or curved crystal diffraction. One purpose of this paper is to
indicate the range of validity of generally used approxima-
tions as compared to precision dynamical diffraction theory,
so that experimentalists will be more informed as to when
and how detailed corrections should be implemented in prac-
tice. Our attention is restricted to Bragg (reflecting) x-ray
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diffraction because it is the dominant and optimal form for
low and medium energy x-ray diffraction. The paper is di-
vided into three sections and numerous subsections.

Our intention is to simplify the complexity of these cor-
rections in such a way as to invite researchers to pursue more
critical measurements, without necessarily requiring the use
of a long and computationally-intensive theory in situations
where it is not needed. The effects are therefore related to
common crystals used in the x-ray regime, with graphs pro-
vided for typical cases.

Section II is concerned with effects which have their
origin in flat crystal diffraction. This includes the well-
known refractive index correction and its various approxima-
tions. The section also discusses asymmetric diffraction and
polarization dependencies, as well as multiple-beam interac-
tions. These considerations also carry over to curved crystals.
The principles discussed, primarily for single-crystal diffrac-
tion, also apply for instruments with multiple crystal ele-
ments in monolithic or separated forms.

Section III is concerned with a series of effects which
often dominate for curved crystals while being generally
negligible for flat crystals. Curved crystal corrections are less
familiar to many researchers. The depth of penetration of the
x-ray field inside curved crystals, the shift of the mean angle
to diffracting planes, and lateral shifts around the crystal sur-
face are addressed. Shifts and dispersion nonlinearities aris-
ing when diffracting surfaces lie off the Rowland circle are
also a major consideration. Several of the effects are isolated
and quantified here for the first time. The specific concern is
with Bragg diffraction in the Johann geometry, although
many of the relations are of general application.

Refractive index corrections occur at the level of 100-
300 ppm and hence may be readily observed with modem
instrumentation. However, other systematic contributions to
profile centroid shift, detailed in this paper, can often exceed
this level and are less well known. Researchers working with
measurements approaching the ppm level will be concerned
with estimating the magnitude of these effects in order to
decide whether to evaluate or avoid them for the specific
crystal, curvature, energy, and geometry. Experiments often
involve interpolation or extrapolation from calibration lines,
so that dependencies upon diffracting angle are as important
as the magnitude of the corrections. These dependencies are
presented in formulas and graphs.

II. FLAT CRYSTAL SYSTEMATIC CORRECTIONS

A. Overview

Common approximations for refractive index corrections
are indicated in Sec. II B, which provides a brief review of
the standard formulas. Section II C compares these forms
across large ranges for selected crystals. This demonstrates
the limitations of some commonly used equations. The accu-
racy of refractive index estimates can be limited by form
factor uncertainties, in optimum cases, rather than by other
approximations or effects.

Sections II D and II E indicate the main corrections to
these prescriptions following (standard) two-beam dynamical
diffraction. The first correction (asymmetric diffraction) is

well defined but depends on the orientation of diffracting
planes in the crystal, which are sometimes inadequately
known. The second correction (peak profile asymmetry) de-
pends on the crystal thickness and perfection, as explained
below. Asymmetries of diffraction profiles with iT-polarized
radiation (see Sec. 11 D), which generally occur for all crys-
tals, can introduce major corrections to refractive index pre-
dictions, at the 10%-50% level, and are therefore important
if high accuracy is required. This correction is well defined
in standard two-beam dynamical diffraction, but is not given
to convenient approximation. However, simple approxima-
tions are presented here in formulas and graphs.

Section II F indicates typical uncertainties relating to the
use of databases as well as the results of crystal structure
determinations. Sections II G-II I illustrate the complexity
of real systems beyond two-beam diffraction in forbidden
diffracting regimes or in local three-beam interaction re-
gimes. Other significant but tertiary effects, including mosa-
icity and diffraction tail asymmetry, are discussed briefly in
Sec. II J.

The scales of these contributions are illustrated in sum-
mary form in Table I, where it should be remembered that
the relative magnitude of these effects can easily vary by an
order of magnitude from one crystal type to another. Despite
the overall complexity, high accuracy is certainly possible
with curved or flat crystal measurements, either by explicit
avoidance of problem regimes or by adequate correction for
the systematics involved. Precision measurements can com-
pare unknowns to a nearby calibration line, so only the dif-
ference in refractive index and other corrections is directly
relevant. For example, the refractive index contribution to
systematic corrections between lines separated by less than
2° in the same order of diffraction and away from near-
normal incidence or any absorption edges is generally an
order of magnitude smaller than the absolute correction.

This example of an appropriate experimental design can
achieve a sensitivity of perhaps 20-30 ppm without requir-
ing refractive index corrections. Further, if a series of cali-
bration lines covers the region of the unknowns and is well
distributed, the slope of the spectrometer dispersion can also
be estimated, and under appropriate conditions only the con-
sequent error in, or variation of, this slope will yield a sys-
tematic error. Typically, this can add an order of magnitude
in accuracy. In both these cases, of course, the calibration
lines must be measured on an absolute footing elsewhere or
with respect to further calibration lines at a similar level of
precision. Detailed discussion of how this could or should
proceed has been given elsewhere, following primary optical
standard and crystal lattice spacing determination and a com-
parison for the x-ray and -ray regimes. 15 ' 16

B. Refractive index shifts for perfect crystals in
symmetric diffraction

Estimates of refractive index shifts derived from the
Bragg relation inside the crystal compared to in vacuo usu-
ally follow the formula' 3
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TABLE 1. Magnitudes of corrections relative to refractive index shifts; 'Typical estimates for flat crystals.

Factor Location Percentage Sec.

Use of Eqs. (3) and (4) Near atomic absorption edge 3%-12% II B and I C
Far from edges 1%-2%
Medium-high Bragg angles 6%-19%

Use of Eqs. (2) and (5b) Generally 0.1%-0.2% H B and H C
High Bragg angles 1.0%

Asymmetric diffraction, 10 Angle to surface' 2%-7% H D
Exit vs incident angle 0.1%-1.0%

Peak shift Thick perfect crystal 10%-50% II E
Very thin or ideally mosaic crystal 0%

Perfect crystal thickness 10%b Peak shift 1%-5% H E
Mean shift 0.1%-l.0%

Form factor uncertainties Generally 0.1%-1.0% H F
Lattice coordinate error Generally <0.5% II F
Possible three-beam interaction Allowed, low order, high angle 0% II H

Allowed, low order, medium angle 1%-20% H H
Allowed, medium order 10%-200% III
Forbidden 5%-100% H G

Tail asymmetry Extreme Bragg angles 5%-10% 1H J

'After correction for a, itself.
bIntermediate thickness regime.

nAd | (1 in l+7in r- 1/2 1 - tr
- 1 + ' 1 _

2d sin Oc sm2 OC sin cOC

where X is the incident (vacuum) wavelength of the rat
tion, d is the lattice spacing, n is the order of diffraction,
is the refractive index, and Oc is the "center" of the Br
peak.t3 The Bragg angle OB follows from setting the rig
hand side to unity, and a semiempirical correction to
angular location of diffraction follows from equat

=1-tLr to, e.g.,

X 2rOFO
s5= 2 T

where ro=e 2 /mnec 2, FO is the structure factor for forw
scattering (hkl=000), and V is the unit cell volume. Con
ering energies well away from absorption edges, the expo
sion may be simplified further using the effective elect
number density

FO NAPZ.,

Vfl j MW

where i is summed over all orbitals and Zi refers to the
number of electrons in orbital i. This correctly predicts the

(1) approximate overall shape of each edge (neglecting the fine
structure), but with a dip at the edge reaching the unphysical

dia- value of -a. The latter occurrence may be corrected by the
I Yr addition of small semiempirical terms to the argument for the
lagsg log term, but then the equation is no longer well defined or
ght- readily calculable from standard tables. Several such equa-
the tions are derived in Ref. 13, where the agreement of form is
ting good, but errors of one or more electrons (in FO) arise for

iron and calcium below or near the edges. In such regions of
anomalous dispersion near the absorption edges, the value of

(2) the overall structure factor can fall below zero, in which case
refraction has the same sign as for conventional visible op-
tics. A consequence of the phase velocity of x rays that are

sard slower than the speed of light is the possibility of Cerenkov
sid- radiation produced by relativistic electrons. This has been

treosn observed in the soft x-ray regime.
For first-order radiation in the angular (Bragg) range of

0.65-1.15 rad for typical crystals, centroid shifts are domi-
nated by the refractive index correction, [from Eq. (1)]

(3)
AX xX, (2d)2

where NA is Avogadro's number, p is the density of the crys-
tal, Zrn is the number of electrons per molecule, and M" is
the molecular weight (convention is not followed, in order to
avoid confusion with Z, electron mass, and refractive index).
As opposed to visible light, the refractive index for x rays is
usually less than unity, so that the phase velocity of x rays
within most media is greater than the speed of light and
incident rays from a vacuum refract away from normal inci-
dence.

This may be extended to allow for anomalous dispersion
in an ad hoc way using

FO ~ne= NAP [Zn i t n| 1 - A )| 

(5a)

where Xc is the wavelength inside the crystal. This corre-
sponds to a shift of the peak angle from the Bragg angle by

A 0= OC- OB= arcsin 8.(2- )+( ) -arcsin n )

(b2d \ 2 tnO 
tan

(5b)

Note that &X 2 , so that the shift is approximately propor-
tional to tan B* . For a flat crystal geometry and a flat detector
(normal to the principal ray) at distance R, this yields a shift
across the detector of

Rev. Sci. Instrum., Vol. 66, No. 11, November 1995 Bragg x-ray diffraction 5125
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A Y= R tan(Oc- OB) RA0. (c 
25.0

A positional sensitive detector such as a proportional
counter will be able to measure this shift. In the Johann
curved crystal geometry, detection is made on the Rowland
circle after focusing, so that an arc around the Rowland
circle AY, relative to the Bragg location may be defined. A
flat detector is commonly used with curved crystal geom-
etries for simplicity or mechanical reasons rather than the
ideal narrow curved detector on the Rowland circle. For lo-
cations off the pole axis (where the Rowland circle and dif-
fracting crystal coincide), evaluation of this becomes
complicated.17 To first order, Y,= 2ROut where R. is the
Rowland circle radius, and 6Ou,=6+ap is shifted in asym-
metric diffraction by the angle of the diffracting planes to the
surface ap, so

AYz=2RzA 0. (5d)

Within the same approximation, a detector crossing the Row-
land circle at the predicted location and normal to the ex-
pected incident ray will follow

Ax=2RZ sin 0 AO.

23.0

21.0

19.0

170 _

16.0
0.50

(a) ADP 101

*0

T 17.0

14.0

(5e)

These refractive index shifts scale as n 2, diminishing rap-
idly with order.

C. Comparison of semiempirical forms

Figure I compares the approximations represented by
Eqs. (2)-(4) when implemented in Eq. (Sb) in exact or ap-
proximate form. These may be compared to implementation
of Eq. (6), representing the standard route of dynamical dif-
fraction theory. Neither the use of Eq. (Sb) nor the use of Eq.
(6) is exact, since both neglect contributions of the order of
S2. Indeed, the definition of the "refractive index correc-
tion" is itself uncertain. Within this paper, the definition to be
adopted is given in Sec. H D, as represented heuristically and
in approximate form in the preceding text, while a more
careful critique shall be reserved for a subsequent discussion.
(On this issue, see also Ref. 14.)

A comparison of the estimates from these equations is
enhanced by crystal data. In this paper, we give examples for
germanium, silicon, PET [pentaerythritol, C(CH2 CHOH)4],
and ADP (ammonium dihydrogen phosphate, NH4 H2PO4 )
crystals diffracting in various orders of the 422, 111, 002,
and 101 planes, respectively. These represent a useful range
of crystal perfection and character in the 0.1-11 A interval,
with 2d spacings in first order being 2.3098, 6.27121,
8.7358, and 10.641 A, respectively. Crystal and form factor
data are discussed in Refs. 18 and 19, and primarily follow
Refs. 15 and 16 as well as Refs. 20-24.

Equations 3 and 4 are generally inadequate by 3%-12%
or more near any edge structure of individual atomic form
factors, or up to 1%-2% far away from the edges [Fig. I(a)].
Conversely, the use of Eqs. (2) and Eq. (Sb) in exact or
approximate form is usually in agreement with standard dy-
namical diffraction at the 0.1 %-0.2% level over most of the
angular range. For Si 111 at high Bragg angles, errors of the
simpler estimates easily reach 6% or 15%, where even im-

-D
Co

11.0

8.0

5.0

2.0

(b) Si III

0.55 0.60 0.65

R, rad

1.1 1.2 1.3
0, rad

0.70

1.4 1.5

FIG. 1. (a) Estimates of refractive index corrections to the Bragg angle for
ADP 101 planes in the region of the P K edge: Eq. (3) (dash) and (4)(--)
deviate by up to 12% from accurate formulas or experiment near the edge
and 1%-2% at a distance of 7° away, while Eq. (5b) (.) and (6) (-) appear
coincident on this scale. (b) Estimates of refractive index corrections to the
Bragg angle for silicon 111 planes above 63°. At near-normal angles, Eqs.
(3) (dash) and (4) (--) err by 19% and 7% while Eqs. (5b) (-) and (6)(-)
differ by 1%-2%.

proved estimates can differ by 1%. The larger errors remain
at several percent for Bragg angles above 660 and 490, re-
spectively.

Three conclusions can follow from these observations:
(1) Equations (2) and (Sb), or Eq. (6), should be preferred to
alternate forms. (2) Regions of near-normal incidence or of
absorption edge structure should be avoided when possible
in the pursuit of precision wavelength measurements. (3) De-
tailed profile calculations can avoid or minimize this uncer-
tainty in refractive index corrections.

D. Modification for asymmetric diffraction

A deviation parameter y is commonly defined to include
the effects of polarization and crystal asymmetry using

5126 Rev. Sci. Instrum., Vol. 66, No. 11, November 1995
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0.51-b b

2 210 ~
Y= VNFRI IC O'I 

(6)

where a=4(sin OB-sin O)sin OB, H is the real part of the
Fourier component of index H of 4ii times the polarizability,
given by tVIH= - (roX 2 k 1rV)FH; C is the polarization factor
[= 1 for the normal component (OT polarization), or Icos 201
for Cr polarization], and b is the ratio of direction cosines (yr,
yH) of the incident and diffracted (reflected) beams relative
to the normal to the crystal (lamellar) surface. Note that there
are two converse conventions for polarization states, both
widely used; herein the unattenuated polarization with the
electric vector perpendicular to the scattering plane is defined
as ir polarization and therefore has a polarization factor
C =1. Commonly, this is the same as the electric vector be-
ing parallel to the surface. The other convention would nor-
mally reverse the labeling of the polarizations. For symmet-
ric Bragg diffraction, b = -1 (but see Ref. 25 for
qualifications in the use of these parameters in the tails of
Bragg peaks or at grazing incidence diffraction). The refrac-
tive index shift from the Bragg angle (corresponding to y=0
at the profile center) then reduces to Eq. (1). In symmetric
Laue diffraction b=l and this correction disappears. More
generally, this results in a refractive index correction given
by Eqs. (1), (Sa) and (Sb) but with Sand hence AO scaled by
(1- 11b)12.

This relates to the shift of incident angle of the profile;
for the output angular shift, direction cosines are inter-
changed so b -* lb. Here, the dominant shift of the peak
angle arises from the mean angle (ap) of the diffracting
planes at the surface to the surface normal-zero for the
symmetric case. Assuming that 0i = 0 r (the angles of inci-
dence and reflection with respect to the diffracting planes are
equal), which is accurate below the level of other simplifica-
tions, this is related to b using

sin 0int
sin Sou

I

cos 2a,,+sin 2a, Cot Oin'

a)
0

'a
70-

C
0

C.,
E2

0.3

0.1

-0.1

-0.3

-0.5
0.01 1.130.29 0.57 0.85

0, rad

FIG. 2. Plot of the effect of asymmetric diffraction, a,= 17.5 mrad, on the
refractive index correction from the y=0 location to the Bragg angle. The
solid curve indicates the fractional difference in the shift of the exit angle for
asymmetric vs symmetric (Bragg) diffraction. The dashed curve repeats this
for the incident angle, while the third curve relates to the difference between
incident and exit angles.

0a)

e-

(7) (a)

10f

1(-2 

0.166500 0.166570 0.166640
O+a, rad

0.166710 0.166780

where Oin, and 0
fout are the incident and outgoing grazing

angles relative to the crystal surface. For a finite, divergent
source or for curved crystals, this prescription is complicated
by the variation of b with surface location and with penetra-
tion depth, respectively.

Experiments using collimated parallel incident beams
may measure deviations of diffracted wave exit angle rela-
tive to the crystal or relative to the incident beam; in the
latter case the deviations of ap would cancel. In the former
case, or where broad sources emitting in 4vr are used, the full
shift of tt, in angle of emission may be observed. The refrac-
tive index contribution to this shift, relative to the incident
beam, is given by the sum of the inward and outward devia-
tions, by Eq. (5b) scaled by 1-(b+ 1b)/2>2. In the sym-
metric Bragg case this factor is exactly 2.

Shifts of the exit angle relative to the crystal surface, as
may be measured on detectors observing broad sources
where the incident angle may be ill-defined, would involve a
scaling of (1-b)/2 from the above. An example is given in
Figs. 2 and 3 for ap =17.5 mrad (1°) and the diffraction from

A,_

(b)

-11.4 -5.5 04

y

6.3 12.2

FIG. 3. (a) The effect of asymmetric diffraction on Si 111 rocking curves for
ir (full line) and o-(--) polarizations. Asymmetry with a misalignment of
ap = 17.5 mrad is indicated by dashed and dot-dashed lines, respectively, on
the angular scale O+ap. (b) The same comparison as in (a), but on the y
(diffraction coordinate) scale.
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-Ao -- , -I- _, 

-10.0 0.0

y
10.0 20.0

try. The corresponding peak shift is dy with -1 ;dy _O,
where - I <v _ I covers the ideal diffraction (Darwin) width.
A nonabsorbing perfect crystal has dy =0 and a top-hat pro-
file. Very thin crystals also have dy-0 with wide Pendell6-
sung oscillations (Fig. 4). However, most real (thick) crystals
in first-order diffraction have a peak for fr polarized radiation
at dy-y -1 (Fig. 5). This is a direct consequence of the pref-
erential absorption with increasing dy, or equivalently a con-
sequence of the imaginary component of the structure or
form factors of the crystal. This corresponds to a shift reduc-
ing the refractive index correction by up to 50% or more
(though usually smaller). For the incident wave and angle,
this is

sib C 4Adysin Op-sm 6c- -2b sin OB

FEG. 4. Diffraction profile for a thin (0.4 sum) Si 11 crystal, at 0.7 rad.
Reflected (diffracted) ratios are indicated for ir polarization and the weaker
cr diffraction. Note that the convention used for choice of polarizations is
discussed in Sec. II D; herein the unattenuated polarization with the electric
vector perpendicular to the scattering plane is defined as 7T polarization.

Si 111 crystals. The effect of asymmetric diffraction on the
refractive index shift is 7% of the total correction when the
incident angle is reduced to 12°, but is still 2% at 45°. The
effect on the exit angle relative to the incident angle is much
less pronounced, being only 0.6% of the total refractive in-
dex contribution at 12°. Note that reductions of the angular
shift by 12% correspond to reductions of the angular diffrac-
tion widths by the same fraction, but that profiles and widths
on the diffraction coordinate scale y are invariant.

A simple solution is to measure the angle of the diffract-
ing planes to the surface to high accuracy or to transform
profiles to a sin a scale before further analysis is conducted.
Often these alternatives are not available or convenient, but
this uncertainty or shift can be minimized by the use of
higher Bragg angles.

E. Peak profile asymmetry

Estimates of shifts based on Eq. (6) or on a scaled ver-
sion of Eq. (5) following Sec. II D neglect profile asymme-

0.70

0.56

-1-'

0
al)

0.42

0.28

0.14

0~00 I:--
-5.0

FIG. 5. Diffraction profile
Bragg reflected (diffracted
weaker a- diffraction. The
the y=0 location, with a p

7r polarization or a, away from wr14
cr polarization near 7r/4

For the angular shift of the outgoing wave relative to the
diffracting plane, this may be approximated by

A6(p C7)( ( bj)I7IdY( 2 sin B COS S), (9)

where the first bracketed term is unity in symmetric Bragg
diffraction and the last bracketed term contains the explicit
angular (energy) dependence of the shift. aY polarized radia-
tion is near symmetric, with dy and any consequent effect
vanishing, at angles near nr/4 rad.

For dy constant, I4 °' -2 gives a dependence upon the
Bragg angle similar to Eq. (6) (Fig. 6) (but dy is not gener-
ally constant with the angle). This contribution is maximized
for first-order radiation and decreases rapidly with increasing
diffraction order. This estimate may typically exceed the real
(mean) shift by a factor of 4 or more, reflecting the smooth
and gradual decline of reflectivity from the indicated peak to
the y = + I location [as opposed to a a function at y = --1 as
suggested by the first part of Eq. (8)]. For sufficiently thin or
nonabsorbing crystals, the actual shift from this source may
be very close to zero (as often for (a polarization and as
opposed to the above estimate). There is a regime of inter-
mediate crystal thickness where flat crystal centroid locations
depend on this thickness, but the precision of results is gen-
erally not limited by the corresponding uncertainty (cf. Table
I).

This discussion has remained general regarding the ac-
tual spectrometer geometry involved, although results have
been given explicitly for a single-crystal device. Considering
only flat crystal diffraction, there are numerous parallel, an-
tiparallel, or other multiple crystal spectrometer arrange-

/ - - ---- \ ments for monolithic crystals or separate elements. The
reader is referred to Ref. 26 or other sources for a detailed
discussion of these geometric and spectroscopic arrange-

-2.5 0.0 2.5 5.0 ments. Scans and measurements may be provided by varying

the final crystal diffracting angle with respect to the axis of
for a thick (1 mm) Si 11l crystal, at 0.7 rad. h is rb oaigteageaon h omlt h
1) ratios are indicated for iT polarization and the the first; or by rotating the angle around the normal to the
ir polarization has a clear asymmetry relative to diffracting planes (for asymmetric diffraction or multiple-

peak near y=-. beam studies); or by varying angles symmetrically or asym-
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FIG. 6. Profile asymnetry given by the y =~0 to y=-I
polarizations t--:--) compared to refractive index shif
(full line). (a) For silicon It1 in first order, both polarize
metry of the same magnitude as the refractive index es
the angular range. (b) For PET 008, both polarizations sh
profiles, with the asymmetry below the 10% level.

crystal types used in the different x-ray optical elements, to
improve the resolution or control the bandpass. 1 Again, the
detector may be represented by a rectangular slit or by a
more complex position-sensitive device. This kind of com-
plexity is not of direct concern in the current paper. Single-
crystal results should be convolved together following the
appropriate geometry. 1 2' 13

--------- If only the final crystal element is rotated, relative to the
optimized peak orientation, then the (+,-) geometry men-
tioned above (with a broad detector) has a peak broadened by
the first crystal profile and shifted toward the mean value,
with a resulting symmetric profile. Conversely, the rotation
of a narrow or position-sensitive detector in the precisely
parallel arrangement yields an asymmetric, narrowed profile

1.12 1.49 of higher resolution than the single-crystal result, which is
shifted toward the peak value. In general, the observed peak
and mean values are dependent upon the spectrometer geom-
etry and alignment, but lie between the single-crystal peak
and mean values.

Although the contributions in Secs. IT A-Il D are rea-
sonably well defined, the effect in this section is difficult to
evaluate separately from a dynamical diffraction calculation.
Instead, we have indicated upper and lower limits for the

X effect, which are typically uncertain at a few percent of the
refractive index correction. Some procedures model reflec-
tivity profiles (following conventional two-beam dynamical
diffraction for flat crystals) as a function of angle and then
derive the mean shift from the Bragg angle. This explicitly
avoids the approximations represented by Eqs. (3)-(5), and
is equivalent to the use of Eq. (6). More important, this pro-
cedure represents a considerable improvement over the fore-

1.04 1.37 going asymmetry estimates, as the centroids can be evaluated
explicitly for the appropriate crystal thickness (and even

I shift for iT and (6 spectrometer geometry). The problem of evaluating system-
ftfollowing Eq. (6)

zations show asym- atic shifts is then partially reduced to a computational prob-
stimate for much of lem.
how near-symmetric

metrically for a double-crystal pair or for the whole
system. 12'1 3'26-28 Where multiple separate elements are in-
volved, the number of independent axes and free parameters
allow greater flexibility in the scanning procedures while
also increasing the difficulty of the alignment process itself.
For example, in a parallel double-flat crystal geometry (often
denoted +,-) with identical crystals in both positions, where
the angular acceptance is large compared to the diffraction
width, the peak occurs in the true parallel position, while the
zero location could be aligned with the mean diffracting
angle (e.g., with a broad detector) or with the peak diffract-
ing angle (with a narrow detector) broadened only by the
natural linewidth and the source size. The overall shift due to
profile asymmetry will generally be a convolution or super-
position of single-crystal elements, which individually fol-
low the relations given above. Additionally, the extreme lim-
its represented by dy =- 1 and dy =0 are not exceeded.

Some devices make use of asymmetric cuts relative to
the diffraction planes, in order to suppress higher-order ra-
diation or change outgoing divergence.29 30 Others vary the

F. Databases, crystal structure, and purity

The sources for crystal data illustrated in Sec. 1I B have
their own uncertainties which can dominate in the calcula-
tions for some crystals and angles. This also assumes that
impurities or variations between crystals of the same type
can be controlled or minimized.

Silicon is a good example, providing well-defined crystal
data with high lattice perfection and good form factor data in
the energy range considered. For example, the form factors
should be accurate to better than 1% in Fig. 1(b). In many
angular ranges this small form factor uncertainty can provide
the limiting accuracy of refractive index corrections and of
dynamical diffraction calculations of the profile asymmetry.

Other crystals and energies have relatively large form
factor uncertainties or relatively large atomic position uncer-
tainties, particularly those crystals which are not monotonic.
Uncertainty in the form factors (typically at the level of a
few percent for low to medium energies) commonly domi-
nates over coordinate imprecision in the determination of the
structure factor FH for Eq. (2) or Eq. (6), and hence for
determining profile shifts. In particular regions, form factor
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uncertainty can dominate over other systematic contribu-
tions, including refractive index corrections. 32' 33

G. Multiple beam interaction: Forbidden reflections

Major effects on asymmetry, reflectivity, and systematic
shifts occur near "forbidden" reflections or where interfer-
ence occurs with additional diffracting beams. These loca-
tions depend on the orientation of the crystal in aligning the
additional reciprocal lattice points to near the Ewald sphere.

This occurs, for example, in the 442 reflection of silicon.
Figure 7 indicates the locations of resonance with additional
beams in diffraction from the silicon 442, 111, and 444, ADP
101, and Ge 422 planes. A lower wavelength limit has been
introduced since the number of curves (interactions) roughly
follows the inverse cube of X.

Kinematically, in the weak field limit, each interaction
contains an infinity, so that the peak reflectivity (in the origi-
nal direction) will either be zero or will be increased by

0.775 1.550

A, rad
2.326 3.100

1.57 -

1.43

_0 1.294E19

D 1.15

1.01

0.87
0.000

(c) Si 444

0.775 1.550 2.325

Vo, rad

0.775 1.560 2.325
g, rad

3.100

2.310

2.147

1.984

1.821

1.658

1.495
-3.14

(d) Ge 422

-1.57 0.00
qV, rad

1.57 3.14

FIG. 7. Plot of resonances in the (two-beam) diffraction profiles due to interaction with a third (diffracted) beam. Plots of wavelength (X, A) or Bragg angle
(0, rad) vs the azimuthal angle (0, rad). 0 is measured relative to the normal to the lowest hkl Bragg plane providing an interaction in the plot region. O covers
27r rad, but the plots are symmetric. In the plots, each curve represents the peak interaction of one or more (off-axis) lattice planes with the primary and normal
diffracted waves. (a) Three-beam resonances in ADP crystals with the normal diffracted beam reflected from the 101 planes, relative to the 001 normal. These
planes provide vertical Hoes on the plot at qY=0, 7r. The highest two X curves on the plot are due to interactions from 011, 0-11, 1-10, and 110 planes,
respectively; the doublets (beginning at 7.55 A) arise from 002, 10-1 vs 200, -101 planes (due to the inequality of the a and c lattice vectors). At 6= 17.5'
or X=3.2 A, there are 1048 interactions in 27r, or 262 "interfering" planes, commonly overlapping to provide -262 curves in 21r. (b) Three-beam resonances
in Si crystals with the normal diffracted beam reflected from the Ill planes, relative to the 004 normal. These planes provide curved lines on the plot
beginning at X=2.65 A. The highest X curves on the plot are due to interactions from 1-11 and 11-I planes, respectively. At 0= 12.50 or X= 1.36 A. there are
960 interactions in 27r, or 240 interfering planes, providing -480 curves in 2sr. (c) Three-beam resonances in Si crystals with the normal diffracted beam
reflected from the 444 planes, relative to the 004 normal. These planes provide vertical lines on the plot at 1=0, ir, with 400 and 040 planes providing vertical
lines at qr5='/3 and 2ir/3, respectively. The curves for the hkl planes superimpose with those for 444-hkl. The highest 3 X curves on the plot are due to
interactions from 18 odd-index planes. At 0=50' or X= 1.20 A, there are 960 interactions in 2ir, or 240 "interfering" planes, providing circa 240 curves in
27r. (d) Three-beam resonances in Ge crystals with the normal diffracted beam reflected from the 422 planes, relative to the 00-2 normal. These planes provide
curved lines on the plot beginning at X=1.718 A, with 002, 022, 020, 400, 402, and 420 planes providing vertical lines. At 0=40.2' or X= 1.4938 A, there
are 792 interactions in 27r, or 198 interfering planes. (e) Three-beam resonances in Si crystals with the normal diffracted beam reflected from the 442
(forbidden) planes, relative to the 004 normal. These planes provide curved lines on the plot beginning atA= 1.706 A, with 224 and 400, 040 planes providing
vertical lines at qS=0, 7r and 0=-1.25, 1.89, respectively. Note that these planes are allowed, but that the three-beam interaction is proportional to
F(hkl)F(hkl-442), the latter of which is forbidden. A consequence is that vertical lines shall occur with equal intensity at q= -1.89, 1.25 due to the
forbidden planes 402, 042. At 0=48.7° or A= 1.36 A, there are 624 interactions in 2zr, or 156 interfering planes.
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FIG. 7 (Continued.)

many orders of magnitude (subject to energy conservat
Despite the simplicity of kinematic models, this draw
suppression or amplification has been observed.3 4 3 6

this strength of interaction, the critical issue here relate
the widths of these features in azimuthal angle 0 (the a
in the primary diffracting plane, normal to the plane of
dence and relative to some secondary plane).

The kinematic approximation becomes increasi
valid as q5 is shifted away from the interaction resonan
cation. One estimate of the interaction width in k spa(
then given to a reasonable approximation by the dist
from the resonant center at which the effect of the third E
gives a doubling of the intensity (in the kinematic mod(

For a weak or forbidden primary diffracted beam
dominant effect of most secondary diffracting beams wi
to enhance the profile by orders of magnitude. The "into
tion width" mentioned above is then considerably larger
the FWHM (full width at half-maximum). Lower c
stronger interfering reflections have (much) larger intera
widths. If the value of (k lies within the interaction width
effect on intensities, asymmetry, and systematic shifts ca
large.

Extreme cases are indicated by planes such as si
442 [Fig. 7(e)], where the reflection is geometrically fo
den so far as the spherically symmetric atomic form fact
concerned, but is allowed by (weak) scattering from the
ferent site symmetry of the bonding orbitals. For this re
tion, the interaction width with the -1,1,-1 plane
1.543 35 A is measured to be 1.4° or 2.1° (depending
the phase and shape of the interaction). A simple esti
based on the result of Shen36 yields an estimate with
factor of 2 of this, and enables some qualitative conclude
to be drawn. The maximum interaction widths in qS
occur at the lowest energy for a given interaction, whi
also the region of narrowest width features in X or 6 pri
(and vice versa). Interactions with forbidden reflection
with reflections whose complement is forbidden, have e
tially negligible widths in either space. Maximum widt
t space for interactions with strong reflections regs
reach ten degrees. The profile and hence detailed effe

such an interaction depends on the multiplicity of interac-
tions, their phases, and relative strengths, but may at least be
estimated in the single interaction (i.e., three-beam) assump-
tion.

For interactions with only a single plane, the coverage of
(h space in this case (Si 442 at 1.81 A) exceeds 1%; as 1.54
A, or 580 Bragg angle is reached, this has increased to about
260 coverage or 7%-8%. Interaction regions increasingly
overlap one another and the probability of significant inter-
action for a given wavelength and azimuthal angle becomes
large. The two-beam diffraction profile width of i0 3-10-5

degrees is easily dominated by the 0.004°-0.29°-1.33° in-
teraction widths in OB space. Hence in passing through the

3,140 diffraction profile, each side of the peak will be amplified (or
suppressed) by large and asymmetric factors. Around the
peak, this will typically shift the centroid shift due to profile
asymmetry from y=-l to y=+l (outside this region the
rate of decline of the reflectivity will often exceed the rate of
increase of the three-beam induced asymmetry). This can

tion). then be as large as or larger than the peak profile asymmetry
matic discussed earlier, and hence as large as the refractive index

With corrections.
'es to
angle H. Multiple beam interaction: Allowed low-order
inci- reflections

ADP 101 and silicon Ill [Figs. 7(a) and 7(b)] represent
ingly near-ideal cases where the lowest order strongly diffracting
at lo- plane is considered. Here for high Bragg angles there is no
Lce is competing third diffracting plane, and this effect cannot oc-
tance cur. Even at medium angles (e.g., 450) there are only a few
beam interactions, but as the Bragg angle is reduced below 200
[el). these-planes and interactions proliferate. Above 100, orienta-
, the tion of the azimuthal plane of the crystal by rotation of 0, to

ill be higher and higher precision with decreasing wavelength, can
terac- explicitly avoid such interactions. At sufficiently low angles,
^ than this procedure will again exceed the precision of the source
)rder, and crystal alignment, even if the orientation is known to
action high precision. Near grazing angles, or in the low-angle tails
h, the of Bragg peaks, the Fresnel (or 000) beam and reflection

an be becomes dominant and must be included (separately from
any other multiple beam interactions).25

licon These allowed and low order planes (ADP 101, Si 111)

rbid- have much fewer and weaker interactions than presented in
tor is Sec. HI G, with maximum widths in q space of the order of
e dif- 0.001°-0.0001° leading to quite small percentage coverages.
eflec- Diffraction widths of the order of 0.01°-0.001° also domi-
es at nate over typical interaction widths of 0.0006°-0.000 0010
upon (except for the curves of constant 0), so that three-beam

imate interactions appear as rapid fluctuations on top of a narrow
hin a region of the normal two-beam profile. Here induced asym-

sions metric shifts of centroids would generally be considerably
space smaller than the peak profile asymmetries discussed above.
ich is
files

i or 1. Multiple beam Interaction: Allowed medium-order
Is, or reflections
,ssen-
ths in For intermediate cases such as silicon 444 or germanium
salary 422 [Figs. 7(c) and (7d)], there are interactions at all the
-ct of diffracting angles. Thus, the azimuthal angle can never be
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ignored, and the situation for high Bragg angles corresponds
to that for low Bragg angles in the near-ideal cases (Sec.
II H). Here, several hundred (or thousand) interactions occur
for any given wavelength below angles of 400 or so-each
interaction with a given plane in general occurring at a set of
four specific azimuthal regions (following the plane and
crystal symmetry). These four regions in 2iT correspond to
two independent curves, with an apex at the highest wave-
length (or Bragg angle) for which the two planes involved
interfere. Some of these interactions and some of these
curves cross or overlap one another, depending upon the lat-
tice symmetries. However, there still remain several hundred
or thousand curves and interactions to be accounted for, and
the alignment and tolerance on the spectrometer is typically
inadequate to explicitly avoid these interactions.

For the allowed but medium-order crystal planes (Si
444, Ge 422), interaction widths in 0 and 0 are several or-
ders of magnitude smaller than for forbidden reflections.
Maximum widths for strong reflections in 0 space range
from 0.10 to 0.010, while coverages in ¢k space at 0=0.8717
rad for Si 444, and at 0=0.7033 rad for Ge 422, are esti-
mated at 0.18° and 0.24°, respectively. Coverages less than
0.1% imply that interactions may be avoided or neglected in
many cases at these medium angles. For 1.2 A, however,
diffraction widths of 0.001°-0.000 010 approach interaction
widths in OB space of 0.001°-0.000 0010. Then changes of
intensity at far tails are negligible, but major and rapid
changes occur within these widths, and hence within the pro-
file widths, leading to asymmetries which could easily cor-
respond to shifts of the mean diffraction coordinate by Sy
- 2 or more.

In the high-angle cases, measurement of crystal orienta-
tion can allow these interaction regions to be avoided, but
this is not true for the higher order diffraction and lower
wavelength regions. Also, the use of calibration lines or other
relative measurement techniques cannot address this source
of error or systematic correction unless a dense set is avail-
able. In all cases, however, high experimental resolution
should confirm or eliminate hypothesized effects of three-
beam interactions. Diffracted intensities much larger or
smaller than expected provide an indication for these inter-
actions. The rapid oscillation of intensities over (narrow)
ranges of the smooth diffraction profile, separate from and
superimposed upon the Pendellosung, is also a strong indi-
cator of these interactions. The symmetry of these features is
often able to determine 0 to better precision than may be
possible from alignment considerations. Two-dimensional
detection is able to identify changes of (convolved) reflectiv-
ity with the variation of X and k, and hence provide much
more restrictive limits on possible multiple beam interac-
tions.

J. Tertiary corrections

For flat crystals, this essentially completes the summary
of effects leading to systematic shifts of the Bragg angle or
detector position for centroids around diffraction peaks. Fig-
ure 8 illustrates the agreement of the sum of these estimates
with detailed profile calculations.

10~3

10. 4

0.77 0.95 1 13 1.31 1.49
@, rad

FIG. 8. Sums of contributions to flat crystal peak or centroid values for Si
1 II diffraction. The refractive index shift, Eq. (6), is given by ... while the
estimated mean based on a peak at y = - I is indicated for a and 7r polar-
ization by the solid and long dashed lines converging at normal incidence;
the actual peak for T=0.4 mm is indicated by solid and short dashed curves,
converging at normal incidence. The latter corresponds approximately with
y = -0.33, and there is fairly good agreement of the final mean shift (--and

-, respectively) with a value corresponding to yak4.

Corrections to the above prescription include the accu-
rate derivation of a mean dy value from estimates of asym-
metry and the use of a more exact arcsin expression [from
Eq. (6)] rather than the simplified form indicated in Eq. (5b).

Mosaicity has potentially significant effects on centroid
location, defocusing or broadening asymmetric profiles to
center more on Oc than Op. This is important for thick crys-
tals (as defined by Sec. II E) when the mosaic block size lies
in the thin or intermediate regime. The profile asymmetry
and mean can then be sensitive to the mosaic parameter and
be shifted toward 0C by the amount discussed in Sec. II E.

The overall asymmetry can significantly affect centroid
determination of experimental profiles, depending on the fit-
ting function. Additional broadening from Doppler effects in
the source or natural linewidths will convolve the asymmetry
and lead to uncertainty in centroid determination. Asymme-
tries of tails become important at the 5%-10% level and are
the subject of a succeeding paper.

General fiat crystal geometries involve broad detectors
with negligible positional sensitivity, with the idealized loca-
tion collecting (integrating) most radiation diffracted from a
given plane (or planes). However, the possible use of a nar-
row or position-sensitive detector will then involve concern
for the profile shape and location at a given distance; and
hence involve correction or allowance for lateral shifts upon
depth penetration. This is usually of negligible significance
for flat crystal measurements, while being of significance for
curved crystals. Thus, it will be discussed in Sec. Emi. The
thermal loading of a flat crystal, as is important for synchro-
tron sources and hot plasmas, leads to stress and distortion of
the lattice planes and diffraction; usually this creates an ef-
fective crystal curvature and so will be addressed briefly in
Sec. III.
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Some of these corrections require evaluation of a (full)
dynamical diffraction theory; others require careful ray trac-
ing or convolutions of x-ray optical elements.

K. Summary of Sec. 11 (flat crystal systematics)

Experiments requiring absolute wavelength determina-
tion to better than 100 ppm in the x-ray regime must gener-
ally involve careful consideration of a variety of effects in
addition to refractive index corrections. Although simple es-
timates for the latter can be accurate to a few percent, there
are significant regimes where these simple estimates are in-
adequate at the 5%-20% level. There are relatively well-
known modifications of these corrections due to the nonpar-
allelism of diffracting planes with the surface, of similar
magnitude. Uncertainties in the angle of the diffracting
planes to the surface can provide significant uncertainty in
experimental results, even when simple formulas are avoided
and detailed computations are performed. Profile asymmetry
due to dynamical diffraction can be of the same magnitude as
refractive index corrections themselves, particularly for low-
order diffraction of soft x-ray ir-polarized radiation with
thick crystals. The azimuthal angle is often quite uncertain,
and can lead to large shifts of diffraction profiles due to
multiple diffraction. Often this uncertainty can be eliminated
by experimental design.

For flat crystal diffraction, these contributions are rela-
tively straightforward, even if computationally complex, and
associated magnitudes and angular dependencies have been
discussed and presented in simple formulas. The variation of
angular shifts with the Bragg angle can follow tan 0, cot 0, or
0 independent relations, with particularly strong local fea-
tures and alternate dependencies near edges or near three-
beam diffraction points. The precision of profile shifts can be
limited at 0.1%-1.0% of the refractive index corrections by
form factor uncertainties, in optimum cases. The use of im-
precise or inadequate formulas as represented by Eqs. (3) and
(4) or by neglect of profile asymmetry will generally lead to
large errors in derived wavelengths, well in excess of this
level.

Measurements of unknown wavelengths relative to a
nearby calibration line by extrapolation can increase the pre-
cision by an order of magnitude, in relation to refractive
index corrections, profile asymmetry, asymmetric Bragg dif-
fraction, and other effects, but requires an understanding of
the functional relations indicated above for higher precision.
Locally, this can be provided to first order by the slope of the
response between several calibration lines. However, cancel-
lations of the effects of most absolute shifts assume that the
relative measurements are made in the same order and with
nearby Bragg angles, away from absorption edges and away
from extreme spectrometer angles.

Multiple-beam interactions are generally not determined
or accounted for in such calibrations. If the azimuthal angle
is inadequately known, other methods must be used to con-
sider the importance of these effects. In some regimes, varia-
tion with angle of several component effects is far from con-
stant or linear. Care should be exercised in avoiding these
regimes or, again, in understanding the expected functional
dependencies and relative magnitudes.

The complexity of shifts with order and polarization in
spectra necessitates detailed calculations of the sort indicated
here for a precision approaching 1% of the refractive index
corrections. Calculated shifts agree well with the sum of sim-
pler estimates, reproducing the dependence on the Bragg
angle.

Ill. CURVED CRYSTAL SYSTEMATIC CORRECTIONS

A. Overview

Curved crystal diffraction displays all the effects dis-
cussed in Sec. II, but with a modulated amplitude and rela-
tive importance. Section III B considers the typical effect of
curvature on the flat crystal relations. It also summarizes
variable definitions, as the formulas presented are numerous
and relate to effects which are not generally well appreciated.

The remaining sections address additional systematics
affecting the results of curved crystal Bragg diffraction. Ex-
plicit functional forms are provided for the Johann case, al-
though many relations are of general application. This paper
is concerned with focusing and shifts dependent on the dif-
fraction process within the crystal.

Section III C will introduce one of the potentially domi-
nating effects for curved crystals: namely the mean penetra-
tion depth of the incident wave field. Several approximations
are presented in order to indicate the degree of detail neces-
sary for the different experimental regions. Section III D in-
troduces the shift of the mean angle to the diffracting planes
as a function of crystal depth. Section III F will discuss the
lateral shift around the crystal surface of the exit location
relative to the incident location of the photon. These effects
of the diffraction process rather than the geometry are rarely
considered and estimates are often in error by orders of mag-
nitude.

They are correlated with effects relating to Johann aber-
rations, and so cannot be treated in an isolated manner (the
topic of Sec. III E).

Geometrical defocusing and shifts due to the different
Rowland circle and diffracting crystal radii (in the Johann
geometry) leading to variations away from the pole axis are
not the primary concern of this paper. However, finite source
and crystal dimensions interact with defocusing shifts and
diffraction corrections. Correlated results for the Johann ge-
ometry are discussed in Secs. III G-I11 J, which address:
general principles and earlier work; crystal length along the
dispersion direction; crystal and source depths; source length
along the dispersion direction; and crystal and source
heights. Ray-tracing packages3 7 and earlier formulas'7 are
often not adequate for this purpose.

A series of usually smaller corrections and effects will be
discussed in a separate section, including the exact asymme-
try and extinction, detection corrections, mosaicity, diffrac-
tion plane orientation, and 2d spacing.

High accuracy is certainly possible with curved crystal
measurements in many cases, either by explicit avoidance of
problem regimes or by adequate correction for the systemat-
ics involved. Precision measurements with curved crystals
are often made by comparison of unknowns to calibration
lines. In this case, only the difference in refractive index and
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TABLE II. Basic notation.

X: X-ray wavelength (in vacuo); d: crystal lattice spacing (for in-
dex H);
2Rz: crystal curvature radius along the generatrix (Rz is the
Rowland circle radius);
n: order of diffraction; pa,: refractive index (near unity);
FH: structure factor for hkl index; ro=e2/mec2 : classical electron
radius;
Oi/, 4: real and imaginary parts of the Fourier component of
index H of 4ir times thepolarizability OAH= - (e2 X2

1Trmc
2 )FHIV;

both parts are summed over real (imaginary) contributions from
each scattering center so they may be complex, except for the
H=0 (hkl =000) component parts;
sin OB=nk/2d: sine of Bragg angle; a=4(sin 0 8 -sin Oesin 0B;
V: unit cell volume;
apple (mean) angle of diffracting planes to the lamellar or crystal
surface (along the generatrix);
C: Polarization factor [= I for normal component ( r polarization),
or 1cos 20 for t polarization);
Oinc grazing angle of incidence on crystal surface;
ot: grazing angle of emission/reflection at crystal surface;
Yz=2Rz 9

out; detector arc around the Rowland circle from the pole
axis of the crystal [Eq. (5d)];
b=-sin 0j./sin 90.t=-[l/(cos basin 2cr, cot ind)]: ratio of the
direction cosines (yo,yH) of incident and diffracted (reflected)
beams relative to the normal to the crystal (lamellar) surface
[Eq. 7];

I-b b
Rekz) 2_______2-_W
R ) 2 = : the deviation parameter [Eq. 6];

OC: angle corresponding to y=O, defining the refractive index
shift;
dy: value of y for the peak of the (flat crystal) diffraction profile;
0p : grazing incidence angle for the peak of the (flat crystal)
diffraction profile;
T: crystal thickness; A: linear absorption coefficient.

other corrections is directly relevant, and experiments can
ideally achieve sensitivity of 20-30 ppm without demanding
accurate values for the main corrections, as discussed in Sec.
II. Calibration lines must then be measured on an absolute
footing elsewhere at a similar level of precision.15 ,

16

B. Variable definitions and flat crystal systematics

Equations (l)-(9) summarized the relations between the
quantities in Table II and the refractive index shift, asymmet-
ric Bragg diffraction, profile asymmetry, and multiple-beam
diffraction for perfect or mosaic crystals of variable thick-
ness.

For flat crystals, this completed the systematic shifts of
the Bragg angle or detector position for centroids around
diffraction peaks. Figure 8 indicates the kind of agreement
commonly obtained using the estimates and relations indi-
cated therein, compared to detailed profile calculations.

Curved crystal geometries are generally less affected by
the peak profile asymmetry because the effective thickness
leading to coherent diffraction is typically much less than the
crystal thickness. The calculation of the flat crystal profile
asymmetry component in a curved crystal calculation must
therefore use a lamellar or effective thickness dependent on
the curvature and diffraction, rather than the crystal thick-
ness. An appropriate estimation of this lamellar thickness

FIG. 9. Indication of depth penetration in curved crystal Johann geometry
for Bragg diffraction, with associated variables (BP, BX, XP, XZ, &,,,~, OAA
T, t0 , yo) on the generatrix.

helps to ensure that coherence between contributions from
nearby depths is allowed for, while the incoherence of con-
tributions from well-separated depths is also treated. The
main consequence of inadequacy in this area will be to in-
troduce additional effective flat crystal profile asymmetry.
Fully dynamical models of curved crystal diffraction, treat-
ing amplitude rather than intensity propagation, can in prin-
ciple eliminate this difficulty.

The effects of multiple beam interactions are also re-
duced in curved crystal diffraction: both by a broadening of
each diffraction width so that interactions are better repre-
sented by rapid fluctuations on the two-beam profile; and
also by generally incoherent broadening from the range of
crystal locations at which diffraction occurs. Hence the ma-
jor shifts from Bragg angle diffraction for flat crystals (in
symmetric Bragg diffraction), after curvature, are dominated
in most cases by the refractive index correction. There are
also many cases where the effective thickness is not signifi-
cantly affected by the curvature, and where the two-beam
diffraction width is not greatly increased by curvature. This
depends on the crystal, thickness, curvature, and wavelength.

Flat crystal instruments tend to use broad detectors with
negligible positional sensitivity, whereas positional sensitiv-
ity is usually required in curved crystal instruments in order
to make use of the focusing geometry. This difference causes
a shift of interest from the diffracting angle of the crystal
with respect to the source, detector, or monochromator, to the
location of the radiation on the detector relative to the Row-
land circle and the crystal center or pole axis. 81 9 This was
discussed briefly in Secs. II B and II E.

The qualitative effects discussed in flat crystals are
therefore present and significant in the context of curved
crystals; but the magnitudes of the corrections are often re-
duced, and the formulas commonly need to be reevaluated
with a smaller effective crystal thickness, which may lie in
the intermediate or thin crystallite regime while the crystal
thickness T might correspond to the thick crystal regime
(Secs. II E and U J). Other qualitative effects introduced by
curvature will also tend to dominate over those corrections
common to the flat crystal case.

5134 Rev. Sci. Instrum., Vol. 66, No. 11, November 1995 Bragg x-ray diffraction

Downloaded 01 Nov 2011 to 128.250.144.144. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions



C. Curved crystal depth penetration

Dominant contributions to higher diffraction order shifts
from the Bragg angle arise from the varying mean depth of
penetration with angle. To first approximation, this is due to
the variation of mean grazing incidence angle at the surface
compared to the Bragg angle at the diffracting planes. This
effect is nonexistent for flat crystals, but can be large for
even weakly curved crystals. With the linear absorption co-
efficient pa, crystal thickness T, and mean vertical penetration
depth d (cf. Fig. 9), the resulting shift is estimated by

A Oin/outtarccost (1 + 2R ) cos( OB ± ap) ] B ± ap)

-d
~ 2- cot(B± ap),

where d may be estimated using

(10)

0a

TmraxeiA(P-+P+)dt '

Tma min{T,2R z((± 7 )]

P+ =(2Rz+ t)sin(OB± ap)

- V[(2 R + t)sin( OB ±ap)]2 -4tR,-t 2 ,

a-fTt-p4.1/sin Oout+ '/sin 
i ncident J f 0T e - outline 0But+ sin 

i ncidents

rT
Ii,~~~~~~~~~~~~~~~ 

(~ 1/snO]a _si(Bap) 1~-sn B

F--

For thin crystals or high order radiation the former case
[Eq. (1 lc), d-T/2] is appropriate. For thick crystals, low
energies, and large Bragg angles, Eq. 11(d) yields a useful
overestimate. For near grazing incidence, Eq. (1 la) is neces-
sary. The approximate forms, particularly in Eq. (10), are of
quite limited validity, while the initial expressions are much
more appropriate.

The expression for As is given relative to Al at normal
incidence, to indicate the inverse cubic dependence of pho-
toabsorption on energy away from the edges. The depen-
dence on the Bragg angle bears little similarity to previously
considered corrections, and also varies from low order to
high order limits. Equation (11) indicates asymmetric dif-
fraction through ap. a should include the mean effect of
extinction (diffraction) prior to the depth involved. For flat
crystals R, is infinite, so the contribution of Eq. (10) is zero;
but for near-flat crystals, this extinction can increase p. by
orders of magnitude near the peak. For significantly curved
crystals, the diffraction process is effectively negligible prior
to the diffraction peak, and the inclusion of "flat crystal"
values for extinction leads to errors of orders of magnitude in
this correction. 17"8 38

Corrections for profile asymmetry and attenuation
(which depend on penetration depth) require estimates for
FH and F', respectively, so they are not amenable to the
simplified Eqs. (3) and (4). More refined estimates of form
and structure factors must be made if this precision is re-
quired. This shift is often larger than the refractive index

correction and of opposite sign. Figure 10 considers the
value of the approximate forms of Eq. (II) for low and high
orders. Note the different regimes depicted. Use of the ap-
proximate Eq. (lid) is generally invalid, although the quali-
tative form becomes valid for high Bragg angles of ADP 101
0.4-mm-thick crystals (with the given 300 mm curvature). As
the crystal thickness is reduced or the diffracting order is
increased, Eq. (1 ic) becomes a more appropriate and accu-
rate estimate over wide ranges of Bragg angles. Thus PET
008 diffraction penetration depths are well represented by
Eq. (1 ic) for all angles, whereas this is far from true for PET
002. In all cases, penetration depth becomes more important
in absolute and relative senses as the Bragg angle decreases.
The potential uncertainty of the crystal thickness on the de-
pendence of Eq. (1Ic) may be seen to be significant.

The use of Eq. (1lla) with Eq. (10) is able to yield the
correct result in the general case, but requires a valid linear
absorption coefficient P-abs together with an appropriate esti-
mate of mean extinction Next The former can be evaluated
and indicates the form of the dependence, but is typically a
factor of 2 or so too small, depending on wavelength, curva-
ture, thickness, and polarization. Figure 1 1 compares this es-
timate to those derived from dynamical theory for each po-
larization. The simpler estimate based on absorption is
entirely adequate for PET 008 diffraction, except at normal
incidence. For ADP 404, absorption estimates are excellent
for much of the angular range, while at higher Bragg angles
the increasing thickness of the lamellar diffracting units and
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FIG. 10. Estimates of centroid shifts due to depth penetration in curved
crystals. (a) ADP 101 and ADP 404 diffraction with crystal thickness T=0.4
mm, crystal radius 2R.=300 mm, estimating the shift of the exit angle at
surface vs Bragg angle. The solid line represents Eq. (1 Ic), and unsimplified
Eq. (10); (-) and (--) give the infinite crystal limit [Eq. (lid)] and the
better estimate of Eq. (Ila) for ADP 101 diffraction; while (.-) and (---)
give corresponding curves but for ADP 404 diffraction. Effects are larger for
higher orders of diffraction and for lower Bragg angles. (b) The same as for
2 (a) for ADP with a crystal thickness T=4 um. Now Eq. (lIc) becomes a
good approximation for ADP 101 and 404 over much of the angular range.
(c) The same as for 2 (a) but relating to PET 002 and PET 008 diffraction.
Equation (I Ic) is a good approximation for PET 008 for all angles, while the
unsimplified formula is required for PET 002.

_0 107

I I-

-(77

0.22
(a) ADP

CD

(X4

(b) PET

0.55 0.88
i, rad

0.10 0.46 0.82
i, rad

1.21 1.54

1.18 1.54

FIG. II. Estimates of centroid shifts due to depth penetration in curved
crystals. Here the best of the previous estimates [Eq. (IIa), lower solid curve
for first order planes, dash for higher order planes] is compared to those
obtained with Eq. (10) but using input d values including extinction, derived
from dynamical calculations (-.-- for first-order planes and 7r or a- polar-
ization, dotted and upper solid curves for corresponding polarizations in
higher order planes; see the text). The low angle cutoff depicted represents
the minimum diffracting angle for the source geometry chosen. The fall-off
for first order diffraction at high angles is due in part to the small values
involved and consequent computation difficulty in the dynamical calcula-
tions. (a) ADP 101 and 404 diffraction for T=0.4 mm, 2R.=300 mm.
Different source and crystal dimensions are compared in diverging short
dash and long dash lines from first-order curves at intermediate angles. (b)
PET 002 and 008 diffraction for T=0.4 mm, 2R,=300 mm.

the near-flat nature of the crystal lead to reductions of the
effective depth penetration by polarization-dependent factors
of 2 or 3. For PET 002 and ADP 101 diffraction, extinction is
significant even at low angles, reducing depth estimates by a
factor of 2 or 3; while at higher angles the extinction rapidly
dominates in the region of significant diffraction, thus reduc-
ing the expected depths by orders of magnitude.

Estimates using Eq. (1la) are best where the correction
is large, and may be compared (favorably) to other estimates
[Eqs. (llb)-(lld)] across the Bragg range. The correction is
sensitive to absorption edges and increases (rapidly) toward
low angles. Linear interpolation between calibration lines
can yield high accuracy away from these regimes. The un-
certainty in the mean extinction, and hence the effect of pen-
etration depth, is primarily eliminated only by the use of
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(, rad
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0.68 0.95
@, rad

1.22 1.49

-a
Co

10

0.42
(b) ADP 404

0.69 0.96
i, rad

dynamical calculations. t7-19 While these equations are reli-
able estimators, and the figures provide a useful comparison
of these equations, it is also useful to provide some typical
magnitudes, as indicated in Table III, for comparison with
flat crystal and other effects. The latter should be considered
unreliable in comparison to the former, but may be a more
useful and direct presentation for researchers considering the
importance of component effects.

D. Mean angle of Incidence on diffracting planes for
curved crystals

There is a second contribution to the mean output angle,
due not to the penetration depth but to the transmission-
averaged mean diffracting angle. This arises because low in-
cident angles will not yield a mean angle based on flat crystal
reflectivities. Instead, the x rays are attenuated as they pen-
etrate the crystal. Often before the flat crystal profile peak
ye-1 is reached, the transmission will become negligible.
Thus a potentially large shift to lower angles results.

For low absorption and narrow (high-order) diffraction
profiles, this is generally a small effect, perhaps a few per-
cent of the depth penetration estimate discussed above. How-
ever, for highly absorbing and wide (first-order) diffraction
profiles, this can often be 50% or more of the shift due to the
mean depth, with the same sign. The magnitude depends

FIG. 12. Diffracting angle shift estimates. (a) ADP 101 diffraction for
T=0.4 mm, 2R,=300 mm. The simple estimates of Eq. (12) for 7r and a'
polarizations (solid line and dash, respectively) is within a factor of 3 of the
computed (dynamical) value (--and -, respectively) below the absorption
edge. At higher Bragg angles the agreement for a' polarization improves
slightly while that for 7r polarization improves significantly, tying within
10% of the computed value despite the rapidly decreasing magnitude and
some precision-dependent fluctuations. (b) ADP 404 diffraction for T=0.4
mm, 2R,=300 mm across the full angular range. Here the estimates and
computed values are smooth and well defined but bear little relationship to
one another. Note particularly the failure of Eq. (12) for ar polarization
between 350 and 55° and other discrepancies by an order of magnitude. (c)
PET 002 diffraction for T=0.4 mun, 2R=300 mm showing the complexity
of estimates and calculations. In addition to the previous curves, the dotted
and solid lines converging at normal incidence indicate a' and 7r polarization
computations evaluated over the full width at 1% of the peak reflectivity,

1.23 1.50 while the long dash at the top of the curve represents the total (1r) correction.
Except for this last curve, all shifts are negative, as in (a) and (b).

critically on the curvature, since transmission coefficients are
dependent on the effective layer (or lamellar) thickness. In
these cases it is difficult to neglect this contribution.

Since the effects of depth penetration and curvature are
of similar orders of magnitude and are interrelated, it is dif-
ficult to isolate reasonable estimates for consequent shifts
without pursuing full dynamical calculations (as indicated in
Sec. III C). However, an estimate may be made using only
the flat crystal profile for the appropriate effective thickness,
combined with an estimate of the angular shift between ad-
jacent layers in the curved crystal. Then

A OT~ n 0p'

Avc(- 2b cos 0sin GB)

(1 2a)

(12b)

where AOf is the shift of 0i+I - 01 between adjacent steps i
of the computation of the flat crystal profile reflectivity and
transmission coefficients ri, ti; Op is the mean angle of the
asymmetric fiat crystal profile; and Ay( is an estimate of the
shift in the diffraction coordinate y through the lamellar
thickness. This estimate is often 2 (corresponding to the Dar-
win or nonabsorbing full width), but can be much larger
where the curvature radius is small, particularly for first-
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TABLE m1. Magnitudes of corrections relative to refractive index shifts: Typical estimates for curved crystals.

Factor Application Percentage Sec.

Asymmetric diffraction, I' Angle to surface' 2%-7% III B
Exit vs incident angle 0.1%-1.0%

Flat crystal peak shift Thick perfect crystal 10%-50% III B
Very thin or ideally mosaic crystal 0%

Form factor uncertainties Generally 0.1%-1.0% in B
Possible three-beam interaction Allowed, low order, high angle 0% III B

Allowed, low order, medium angle 1%-20%
Allowed, medium order 10%-200%
Forbidden 5%-100%

Depth penetration Low order, high angle 0%-10% in C
Low order, low angle 10%-100%
Medium order, high angle >100%
Medium order, low angle > 1000%

Mean angle of incidence Low order 0%-50% HI D
Medium order 10%-100%

Off-axis shifts High angle (low order)b >100% m E
On axis 0%-10%
Low angle (low order >1000%

Lateral shifts High angle, low order 0%-5% III F
Low angle, low order l0%-100%
High angle, medium-order 1%-50%
Low angle, medium-order >1000%

Source and crystal lengths 0%-20% HI G-III J
Crystal and source heights 10%-200% HI K
Emulsion (detector) shifts 1%-100% m L
d-spacing shifts Low order 0%-10% HI L

Medium order 0%-400%

'After correction for cep itself.
bMuch higher for higher orders.

order radiation. Then the lamellar thicknesses, equivalent to
mean coherence lengths, significantly broaden the profile
width (on the diffraction coordinate or other scale).

This (simple) estimate is compared in Fig. 12 to a mean
angle with respect to diffracting planes summed over an as-
sumed source distribution and a diffracting crystal, following
dynamical theory with certain approximations. The compu-
tation includes small (tertiary) corrections due to the crystal
thickness and length limits, which truncate reflectivity pro-
files at extreme angles. The source distribution is focused by
the crystal so that the reflectivity on the diffracting Bragg
angle scale may not follow a linear relation compared to that
for the source distribution. In recommended geometries, this
nonlinearity is usually negligible but would also be ac-
counted for in the latter procedure. The two results are often
in agreement within a factor of 3, particularly at the low
Bragg angles where the shifts are most significant. Above the
PK edge for ADP 101 diffraction, ar polarization estimates
and computation agree within 10%, despite computational
limitations near this level.

However for ADP 404 [Fig. 12(b)], the result of Eq. (12)
and the computation both indicate increasing shifts with
Bragg angle, but with quite different functional forms and
magnitudes. Equation (12) fails for or polarization at around
450 because of the negligible transmission coefficient, and at
near-normal angles because of the large lamellar unit. In all
cases, Eq. (12) is strictly valid (in the approximate sense)
only for iteration outside a lamellar unit, i.e., if n approxi-
mates unity. For an n significantly larger than unity with
significant extinction through a lamellar unit, the component

relating to intraunit averaging does not behave like Eq. (12a)
(the amplitudes add coherently and in phase). The peculiar
behavior of the computation in Fig. 12(b) in the neighbor-
hood of normal incidence correlates with the decline in depth
penetration and the change of angle with depth, reversed as
the high-angle portion of the profile (not contributing to the
angle shift) is truncated at 900.

Additional complexity for PET 002 is provided by Fig.
12(c). When the magnitude of the shift falls below 10-6 rad,
computational precision introduces large relative but negli-
gible absolute uncertainty. Further, results below 60° are
dominated by the central portion of the diffraction profile
(above 1% of the peak reflectivity), whereas the effect of the
diffraction wings or tails is significant for Bragg angles
above 750, leading to increased sensitivity to source and
crystal dimensions (Secs. III C-Ill K).

The detailed correction is compared to other contribu-
tions and the resulting (calculated) mean angle in Fig. 13 to
indicate the typical good agreement of these contributions
with the total. Typical component magnitudes are illustrated
in Table III (neglecting the detailed and complex angular
dependence and functional form).

E. Off-axis diffraction for curved crystals

The mean angle resulting from flat crystal effects and
depth penetration contributions varies around the crystal sur-
face, and originates at different locations. Ideally (i.e., at the
pole axis), these sources converge in the Rowland circle ge-
ometry to yield Eq. (5d), as indicated in Table II.
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FIG. 13. (a) Sums of contributions to mean exit angle at the surface
curved crystal [mean exit angle (curved crystal) =mean exit angle (fla
tal) + D.P. angular shift + mean diffraction angle shift]. The sol
dashed lines at the bottom are (negative) depth penetration (D.P.) corral
for a and ir polarizations. (--) and (*-) give total mean angular shifts
the upper curves (dotted and solid, respectively) give the mean angul
for the corresponding flat crystal (with a thickness corresponding
region of coherent excitation with significant amplitude, and hence
curvature). (---) and ( ) indicate related diffraction angle shifts. Al
diffraction for T=0.4 mm, 2R,=300 mm. The flat crystal result don
with up to 20% corrections due to the mean penetration depth and up t
due to the mean diffracting angle shift, both decreasing with inc
Bragg angle.

However, for most spectrometers observing a signi
range of wavelengths simultaneously (across a detector
effects of the previous sections are normally highly c
lated with shifts due to the location of diffraction lying
from the pole axis (cf. Fig. 9). The first-order effect of l
to reduce arc lengths Yz around the Rowland circle 1
2RZ0 by a percent or so, following the estimate

A Y -RZ cot Oout sin2 OAX

It0 2.0

0.0

-0
(0

-2.0

-4.0

-6.0

-8.0 L-
0.44 0.68 0.92

f, rad
1.16

e of the
at crys-
did and
rections
s, while
lar shift
, to the

to the
DP 101

FIG. 13. (c) PET 002 diffraction for T=0.4 mm, 2R,=300 mm. The dif-
fracting angle shift provides an 18% correction to the flat crystal shift for
much of the angular range, while the mean penetration depth and flat crystal
shifts are of a similar magnitude.

xP

OA 
(13b)

ninates, where XP is the arc length of the peak (mean) diffraction
to 10%
re~asi~ng along the generatrix of the diffracting crystal to the pole axis

(the amount by which the diffraction is off axis); (The gen-
eratrix is the plane normal to the axis of the cylinder and
passing through the center of the crystal, as illustrated in Fig.

ficant 9.) OA depends on the source geometry and alignment, as a
r), the function of outn. This function OA(0) is the same if 0= 0out is

corre- replaced by 0= OB or 0 = OB + A ORI++profile a/sl Hence just as
away YZ is here related to 0

outh SO YB can be related to OB, while

this is shifts of 0 can be related to shifts of Y.
below The off-axis shift is zero where the crystal is tangential

to the Rowland circle [38° for the geometry selected in Fig.
(13a) 14(a)], and also disappears at normal incidence. A peak shift

is therefore obtained at an intermediate angle (around 63°),
with a larger shift at minimum diffracting angles. Although
AYZ=Y -YB is found to be linear in AO for each of the
systematic corrections to 0 (except near the pole), the linear-
ity is often far from 2R, and can reach a ratio of 3Rz in
typical cases. A point source B at a distance BP from the
pole (cf. Fig. 9) and with a grazing incidence angle OAX to the
surface at the pole leads to a minimum grazing incidence
angle around the crystal circle

1.40

FIG. 13. (b) ADP 404 diffraction for T=0.4 mm, 2R,=300 mm. The mean
penetration depth provides the dominant contribution except at near-normal
incidence, a- and or polarization curves are barely distinguishable, and the
diffracting angle shift remains the smallest contribution.

0min= arccos <1- BP 2 sin BA,-B
2Rj si A 2RI

(14a)

and

| co~s SAX\ I cos 0\
OA = arcsin CS OAx acosi COS 0 - OAx, 0,

~COS lninl)COS OmnJ 
(14b)

where OA is measured in an anticlockwise direction, the posi-
tive sign on 0 refers to most geometries, and the arcsin terms
could fall within either (0, IT/

2) or (fT/2, iT) ranges, depend-
ing on the geometry. Assuming symmetric Bragg diffraction
at the surface yields 1Out-=O. This then specifies the relation
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FIG. 14. (a) Off-axis corrections and the effect on the proportionality of
depth penetration and other shifts on the detector location on the Rowland
circle. The difference between the location of detected radiation (assuming
diffraction at the Bragg angle at the crystal surface, for a point source) and
Eq. (5d) is indicated for ADP 101 diffraction in a typical geometry. Equa-
tions (13) and (14) effectively reproduce this dependence.

of OA to 0 or 0out and allows explicit estimation of the effects
of mean angular shifts (refractive index corrections, profile
asymmetry, nonalignment of diffracting planes, and mean
shift of the surface angle due to depth penetration) on the
detector position on the Rowland circle.

The effect of off-axis corrections on the proportionality
of shifts along the Rowland circle compared with the angle is
indicated in Fig. 14(b). For low angles with the source well
inside the Rowland circle, this is particularly significant,
while shifts of a percent or more persist at quite large angles.
For a source centered on the Rowland circle, the effects are
much larger. This can distort relative measurements or mini-
mize their sensitivity, unless each wavelength (or spectral
line) is scanned to optimize the intensity as a function of
source position.

F. Lateral shifts due to depth penetration

A shift of the exit location of the ray also arises due to
the penetration depth: this causes a transverse shift for flat
crystals, dependent on Au including extinction near the profile
peak. For curved crystals at the pole axis the shift of position
at the detector may be estimated as

AYA(AB>)R arccos[(2 cos B-cos A)cos A

-Vsin 2 A(sin A +4 cos2 B-4 cos B cos A)]

-- 2RB, (15a)

B= OB+ap, A=B+ +A, OA=AOin+ Aout, (15b)

where the last quantities are given by Eq. (10); or, less pre-
cisely,

A Yzo-Rz cot ot sin 2 oAA (16a)

.Z cA t( / aP ) c XZt\

XZ~d[cot(OB+ ap) + Ct(OBs ap)]

0.37 0.57 0.77 0.97
i, rad

1.17

FIG. 14. (b) The shift from the Bragg angle to the mean diffracting angle for
flat crystals for o and 7r polarizations and ADP 101 diffraction, scaled by
2R, (solid and dashed lines), is compared to calculated positions in the
in-circle geometry (-- and *-) and the on-circle geometry of the text (-).
The latter reproduce results of Eqs. (13) and (14) on this scale. While in-
circle results are conveniently interpreted as significant proportionality er-
rors with appropriate corrections, the magnitude and sensitivity of on-circle
corrections is not easily combined into this approach.

where XP follows Eq. (13b) (Fig. 9). A slight imprecision of
the alignment of thin crystals on the Rowland circle, or the
simultaneous observation of a wide angular range (using
calibration lines from a broad source, for example), leads to
an XP of the order of 1-10 mm, dominating over XZ in Eq.
(16). This then includes intrinsic shifts and defocusing from
the off-axis position of diffraction on the crystal. Whereas
the use of XZ in Eq. (16b) or Eq. (15b) estimates the mini-
mum (and negligible) off-axis correction, the use of XP in
Eq. (16b) may be set to the crystal length to estimate the
maximum (off-axis and lateral) correction. Alternatively, the
lateral estimate can be isolated from angular shifts due to
depth penetration using

A Y, 5 = AYI(A 1 ,B) -A AYI( 2 ,B), (16c) 

B=OB+ap, A = B + 0AAinA.t

A2 =B +OA, (16d)

where A, is derived from the extreme angle OA = 0
A,max de-

fined by the size of the diffracting crystal and Al is derived
from this maximum value of XP (or OA) minus the lateral
shift XZ (or AG1n, A6 u). These extreme estimates are indi-
cated in Fig. 15(a), scaled to show changes in the effective
Bragg angle. The estimates vary from dominating over re-
fractive index corrections and other flat crystal contributions,
to being less than 1 ppm over the full angular range. The last
estimate, following Eqs. (16c) and (16d), is a useful overes-
timate for comparison to other contributions.

Using the same equations, with OA provided from an
experimental geometry [Eq. (14b)] gives a more realistic re-
sult, sensitive to the sign of the lateral shift. A more accurate
estimate would separate the angular depth penetration cor-
rection
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FIG. 15. (a) Estimates of lateral detector shifts. Upper and lower limits in
magnitude are presented for ADP 101 and ADP 404 diffraction with T=0.4
mm, 2R,=300 mm. The use of XZ in Eq. (16b) or the use of Eqs. (14) and
(15b) generates the lower two curves for on-Rowland circle shifts, while
setting XP to an assumed crystal length generates the dotted and dashed
curves, compared to the somewhat reduced maxima following Eqs. (16c)
and (16d). These limits represent typical ideally aligned or ideally mis-
aligned shifts. Shifts of the opposite sign would occur for misalignment on
the opposite side of the pole axis of the crystal. Maximum shifts for ADP
404 are several thousand ppm at low angles, while even near normal inci-
dence these effects can be of the order of 1% of the flat crystal corrections.

FIG. 15. (c) Absolute magnitude of shifts at the detector location (on the
Rowland circle) for Si 444 diffraction in the geometry indicated earlier. The
curves have the same meaning as in Fig. 14(b). Here the simpler estimate
provides the correct detailed correction, except at high angles, despite the
shifts being much larger than in Fig. 14(b).

from the lateral shift

AYlat= A YI(A 3 ,B2 )-AYI(A 2 ,B 2 ), (18a)

A YDP= AYl(A2 ,B 2) -A YI(A 1 ,BI),

Bl=OB+ AORI+Profile als' B 2 =BI+AO...t,

A 1=B 1+ OA(Bi),

E

LU
Co
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FIG. 15. (b) Shifts at the detector location (on the Rowland circle) fi
002 diffraction in the geometry indicated earlier. The ideally aligned and
ideally nonaligned estimates of magnitude are indicated by solid and dashed
lines, respectively. The curve -- represents the use of Eqs. (16c) and (16d),
(14b), (10), and (lla), with ,u provided by the absorption coefficient only. It
represents the application of the earlier (relatively straightforward) estimates
to the "real" in-circle geometry, with the same assumptions regarding at-
tenuation. Note the change of sign just prior to the Bragg angle where the
crystal lies ideally aligned on the Rowland Circle. By contrast, (--) uses
Eqs. (17b), (18), (10), and (lla), with the effective As including computed
mean extinction for ir polarized radiation, and hence is the best estimate of
the lateral shifts for a given geometry. The simpler estimate is well able to
indicate the magnitude and sign of the correction, but for precise quantita-
tive corrections to effective angles or wavelengths it is inadequate, whether
at the 100 ppm level for low angles or at the I ppm level for high angles.

(17a) A 3 =B 2 + OA(B 2 )- A Oi.-A out. (1 8b)

In these cases, OA(B) is given by OA(O) in Eq. (14b).
(li7b) It is perhaps surprising that such large effects arise from

these angular and lateral shifts (Fig. 15). They vary from
_ insignificant (the aligned, on axis estimate for lateral shifts)

to significant at most angles (depth penetration estimates) to
dominant at particular low grazing angles and potentially
large elsewhere (extreme off-axis estimates for lateral shifts).
It is necessary to use the best estimates to hope to reach
agreement within a factor of 2 of the true shifts. One diffi-
culty relates to the need to include explicitly the off-axis
nature of the shifts at the detector, rather than using maxi-
mum or minimum values. A second relates to the difficulty in
evaluating the mean extinction addition to the linear absorp-
tion coefficient. For a quick estimate, ILabs may be calculated
explicitly, and (for curved crystals) /ttxt may be neglected.
This typically yields overestimates of depth penetration, and

1.28 hence of the associated angular and lateral shifts, by factors
of 2-3. For high orders of diffraction, the associated error
can be negligible in appropriate crystals, angles, and ener-

for PET gies.
For a small but finite source inside the Rowland circle

and arbitrary crystal dimensions, these effects sum to yield
the total centroid shift of a profile entering a detector on the
circle. Often the associated precision can lie at or below 1%
of the corrections to the Bragg relation, although some com-
ponents may only be accurate to a factor of 2 or 3 if the
above simple formulas are used.

G. Finite dimensions and geometric corrections

Other effects due to the Johann geometry and finite
sources are ray tracing exercises, which can give significant
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modifications of on-Rowland circle relations and more com-
plex off-Rowland circle effects with a consequent variation
and distribution of shifts.

The source should ideally be well centered with respect
to the (cylindrical) crystal curvature and the central plane of
the crystal and the detector location. Nonalignment of the
source with the central plane of the crystal generatrix leads to
broadening and shifts dependent on the height of the source
and crystal and the detector resolution in the transverse di-
rection. Formulas for some of these have been discussed
elsewhere,3 7'39

-
42 and have an origin which is primarily ex-

ternal to the crystal. These references neglect attenuation,
extinction, and diffraction profiles, and assume that the dif-
fraction profile width is significantly larger than the spread of
grazing angles at and inside the crystal (both in simple ana-
lytic formulas and in deconvolved numerical procedures).
The formulas and numerical calculations locate the crystal
on the Rowland circle at the Bragg angle to the source for all
wavelengths considered, with the source center also on the
Rowland circle.

They provide estimates of centroid shifts due to finite
crystal and source size. However, additional terms typically
arise [cf. Eq. (18) of Ref. 40] which may dramatically
modify the effective shift. A source location well inside the
Rowland circle leads to a range of Oi far in excess of the
crystal diffraction width, so that the mean shift must be sig-
nificantly truncated or modulated. Finally, the normal proce-
dure of comparing spectral lines imaged with a curved crys-
tal allows only one (monochromatic) wavelength to be
imaged at the crystal pole axis with 0B = OA, while the other
wavelengths necessarily follow an off-axis relation. At least
some of this inconsistency or lack of applicability has been
noted earlier.41 By comparison, the program discussed in
Refs. 17-19 takes explicit account of the off-circle relations
and includes broadening, convolutions, and shifts from finite
source widths and depths, and finite crystal widths and
depths.

H. Crystal length along the generatrix

This was discussed from a different perspective for a
particular case in Ref. 38 and may be addressed by consid-
ering Fig. 14(a). Here the grazing angle at the pole axis was
defined to be Ax=0 .68 7 677 rad, with an in-circle point
source of BP =26 mm from the pole axis and a crystal radius
of 2R,=300 mm. If OB= OAX, then the detector locations for
wings on both sides of the Bragg angle shall be reduced by
the amount indicated. (Of course, it would be more appro-
priate to use Op= OAX*) The mean of these angles (modulated
by some reflectivity and angular source distribution) would
be shifted strongly to lower apparent angles (and wave-
lengths) by the steep slope on both sides. At OAX, this appears
quadratic in a and hence quadratic in the corresponding crys-
tal length position along the generatrix.

If BP=2R, sin OAX (the source also on the Rowland
circle) and the spread of grazing angles along the crystal
length to is significantly less than the rocking curve width,
then the standard formula

A it to coS 6 Ax

A 24(2R,) 2 sin' OAx
(19a)

is an accurate description of the additional mean grazing
angle shift (at the surface or equally at the diffracting
planes). For a crystal radius 2R =300 mm and
O04= Op=0.6 87 677 rad, the range of significant diffraction
(for ADP 101 planes) occurs over a 5 mm crystal length,
although the profile FWHM is 3 mm. The grazing angle at
the pole axis is also the minimum angle subtended by the
point source on the Rowland circle, so that only the portion
of Fig. 14(a) above 0= OAX would exist, and would be bimo-
dal (with one curve for contributions from the parts of the
crystal closer to the source and one curve for contributions
from the other half). However, the detected location of these
tails is shifted to apparently lower angles by large off-axis
corrections. The two effects approximately cancel to within
1% of their magnitude. By comparison the simple estimates
given above for depth penetration and mean angular shift (as
opposed to detailed calculations) were only generally accu-
rate to a factor of 2 or 3, or some 100 times this uncertainty.
The separation of shifts due to changes in surface grazing
angle from those due to lateral or off-axis shifts, seen in
earlier sections, is less valid here as the diffracting region
covers a large range of surface angles and locations, and
those points with the largest (positive) angular shifts are also
those with the largest (negative) off-axis shifts.

Equation (Sd) (see Table II) becomes quite invalid and
the scaling of off-axis shifts implies that detector shifts of 1
Aim can represent a diffracting angular change of 100 ppm.
This may be a real angular shift, but may also arise from
very small lateral shifts due to depth penetration. Conse-
quently, the interpretation of centroid and profile results is
nontrivial. Therefore, the observed angle is extremely sensi-
tive to the spectrometer alignment, since a change of mini-
mum diffracting geometry A iin to higher angles [from a
change in the source location, pole axis angle, or crystal
radius, as indicated in Eq. (14a)] leads to a direct and near-
equal shift in the apparent or detected mean diffracting angle
(and likewise in the peak angle). The off-axis correction will
also change; the mean can appear to first-order as the mini-
mum spectrometer angle Omin, whether the flat crystal peak
angle Op is greater or less than this. A second-order correc-
tion depends on the asymmetry of the portion of the flat
crystal diffraction profile actually diffracted, compared to the
asymmetry and scale of the off-axis shifts. The reflectivity
will drop as Omin approaches or exceeds Op.

The several hundred ppm magnitude of this potential
shift, and its extreme sensitivity, imply that precision mea-
surements of this type are not feasible without a careful mod-
eling of the profile and the intensity and extreme precision of
alignment. Typically, relative measurements will utilize a
secondary source of x rays at a different physical location
compared to the unknowns being measured. The variation of
location in this nearly on-circle geometry can lead to large
systematic shifts of the type just mentioned, so that the dif-
ficulties in interpretation remain in these types of measure-
ments.

For the in-circle geometry with to= 14.6 mm, Eq. (19a)
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underestimates the range of grazing angles and henc
shift. One side of the crystal now corresponds to lower
ing angles but the symmetry around the pole of the of
shifts is maintained. Despite the angular range exte
5-10 or so times the on-Rowland circle estimate, of
shifts at the extremes are similar, modulated by less d
factor of 2. For sources either on or off the Rowland cir
crystal dimension above to= 14.6 mm clearly reveal
nonquadratic relation of the off-axis contributions, ft
reducing the overall centroid shifts.

More significantly, the effective range is gen
strongly modulated by the (much) narrower differ
width. For the (typical) example of ADP 101 diffractio
FWHM for flat crystal diffraction is 3.2X 10-5 rad, whi
broadened width on the surface output angle profile;
pole axis is still only 3.8X10-5 rad and the 1 perc
range is only 3X 104 rad. Following Eqs. (13b) and (
the latter range corresponds to a crystal length of 0.01'
for the surface; allowing for broadening due to depth
etration down to the 5% level raises this to only 0.04
mm. This is in good agreement with the following, simp
form of Eqs. (13b) and (14b):

(2R, V2 sin AO, tan OAx.

AXP= ~
I source on Rowland circle;

IRzA 0, sin OAI

soce wlCOS2 0 insid-e COS2w cA i rc

source well inside Rowland circle.

Quadratic or other effects outside this range are si
irrelevant (as confirmed in tests). At this 5% extreme (:
mm), the expected off-axis shifts at the detector are apr
mately -0.0483 and -0.0376 Am at lower and E

angles, respectively; weighting this with the relative intc
one might expect a mean shift of -0.005 gtm or an effs
angular shift of 10-9 rad! This is certainly negligible
pared to all other shifts discussed earlier.

For a diffracting angle peak some 0.08 rad away
the pole axis [cf. Fig. 14(a)], a linear variation of de
shift with angle (or crystal location) occurs so that the
centroid shift from off-axis shifts would be precisely
Additionally, for OB = 1.15 rad, a broader quadratic minm
would lead to a mean shift of opposite sign and g
reduced magnitude, but with a large off-axis offset relat
the ideal [Eq. (5d)]. For the source well within the Ron
circle, as in the standard examples of this paper, diffract
Op yields a significant total off-axis shift if the peak
does not correspond to the grazing angle at the pole
OAx. However, the crystal length around the generation
tributes negligible shifts, which in addition are defined 1
diffraction widths and not by the crystal dimension.

This fails to be true for a small source very close
Rowland circle, where the profile is truncated at lower a
by the alignment and at higher angles by the diffr
width (or the crystal dimension). Even here, the upper
truncation shift is typically only 10%-20% of the mean
of the diffracting angle, and the off-axis shifts compe

ze the for this down to below 1% of the total shift from Amino or
graz- toward the ppm level. A more serious problem arises from

ff-axis the potential inequality of imin and Op in this on-circle case,
Ending and the corresponding profile truncation.
tf-axis Scanning methods are not uncommon in Johann spec-
than a trometers and optical elements, and lead to the possibility
rcle, a that a broad detector may be used instead of one with posi-
Is the tional sensitivity. In this case, the spectrometer angle will
further define the reference position and the mean diffracting loca-

tion, while complications of the focused profile are no longer
erally of prime importance. If the (point) source is scanned around
action the Rowland circle relative to the pole axis of the crystal,
)n, the then the diffracted intensity of a monochromatic wavelength
ile the will not be at maximum at the expected Op position. Instead,
at the as discussed, the maximum will arise when the angle to the
entile pole axis is less than this, so that two images are focused to
(14b), the detector, one from each side of the pole axis. As the angle
8 mm to the pole axis is decreased, the images will retain almost

pen- constant diffracted intensity as the diffracting regions of the
-0.05 crystal move further away from the pole. Finally, the dif-
plified fracted intensity will drop rapidly as the images track beyond

the crystal limits.
In other words, a normal finite curved crystal in a scan-

ning on-circle geometry will have a high reflectivity from
above the peak of the flat crystal curve (measured with re-
spect to the pole axis) to a limit given by the edge of the

(19b) crystal. Nonmonochromatic incident radiation widths will
broaden this further. This profile is very broad and poorly
centered due to the on-circle geometry, and hence does not
avoid the difficulties discussed above.

;Op02 1. Crystal and source depths

,proxi- The effect of crystal depth in Refs. 40 and 42 is prim-
higher arily an estimate of the lateral shift component for the source
:ensity and crystal both centered on the Rowland circle [similar to
ective Eq. (16a) using XZ in Eq. (16b)]. The integration was appar-
com- ently performed over positive and negative depths (i.e., in-

cluding regions outside the crystal). In the above in-circle
from geometry with a 0.4 mm depth, the quoted effect of crystal

tector depth would be -0.066 /.m at the detector or -2.2X 0-8
mean rad. This is negligible. The prediction of the formula would
zero. be reduced dramatically by absorption and extinction coeffi-

limum cients as discussed earlier. This geometric component per se
Greatly is inseparable from the aforementioned components defined
time to by the mean surface angular shift upon depth penetration, the
wland mean lateral shift upon depth penetration, the depth compo-
tion at nent of the mean diffracting angle shift, and even the effec-
angle tive mean shift of the fiat crystal profile. These dominant
axis, contributions are large and significant in many cases, are

K con- often limited by the crystal depth, and are detailed in Secs.
by the III C-III F.

Other references have been concerned with profile
to the widths rather than shifts,43' 44 but provide useful expressions
angles concerning these, particularly in the context of Sec. III L.
action The source depth was correctly observed to have a neg-
angle ligible effect on centroid location, although the main effect
n shift would be to reduce shifts arising from the crystal length by
ensate providing more off-axis contributions with Opi, TAXI
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J. Source length along generatrix

The quoted effect of source length along the generatrix
(with a point crystal of negligible dimension) from Ref. 40 is
the transform of a uniform range of AO (at the crystal sur-
face) to a nonuniform range of sin 6. This corresponds to
locally symmetric source geometries, uniform in the 27r an-
gular distribution. Alternate nonuniform distributions can be
significant and should be modeled separately to estimate this
effect. Part of the effect for a symmetric distribution would
be truncated by the diffraction width defining the effective
source dimension if the latter were large enough to provide a
significant shift. Unlike Sec. III 1, there would be no off-axis
correction at the crystal to compensate for this angular shift.
Hence, if the location on the detector were transformed to a
value of sin 0, the mean of the resulting profile could indeed
be shifted significantly. However, the detector would typi-
cally either be a curved or flat plate on the Rowland circle or
at some angle to it (e.g., normal to the ray from the pole
axis). In this case, the profile on the detector, either ideally or
otherwise, represents a profile in 0, as discussed earlier.
Hence the centroid of such a profile would be unchanged.

The assumption of a point crystal is unrealistic, and the
source length can couple with the crystal length and with the
crystal depth (if, as in high orders of diffraction, absorption
is negligible). For ADP 101 diffraction in the above ex-
amples, the mean penetration depth is only 3-5 /zm, so that
this coupling will not generate large effects.

If the angle subtended by the source y0 1(2R, sin 6) is
greater than the diffraction width corresponding to the crystal
length, estimated by inverting Eq. (19b) and replacing AXP
by to, and with to comparable to or less than the equivalent
length for the diffraction width AXP [:3-5 mm in the pre-
vious example, following Eq. (19b)], then rays from each
pair of symmetric source points will cover higher and lower
diffracting angles with equal intensity and approximately the
same lateral shifts, so that AOu, and the mean detector loca-
tion will be largely unaffected. [The detailed result, illus-
trated in Fig. 11 (a), is dominated by varying truncation of the
flat crystal profile and their effect on depth penetration, and
small asymmetry in the truncation limits to yield a mean
diffracting angle shift, corresponding to 1 ,um shifts on the
detector or 2 ppm effects in both in-circle and on-circle ex-
amples.]

Conversely, if the angle subtended by the source at the
crystal is much less than the range of grazing incidence
angles across the crystal (for a point source), and with both
of these greater than the diffraction width A6, then rays
from each source point will cover the range of angles within
the diffraction width, so that A61out will be largely unaffected.
However, diffraction will occur at crystal points far removed
from the pole axis, so that the lateral off-axis shifts shall be
just as large as in Sec. III H. For the typical in-circle ex-
ample, the angle subtended by the source yolBX~yolBP
and the range of angles across the crystal is often (much)
larger than the range of diffraction across the crystal surface.
Hence effects in on-circle or in-circle geometries should be
insensitive to a finite source length alone but, particularly in
the in-circle case, coupling with a large crystal length can

lead to a large and negative mean off-axis shift to lower
apparent angles, given roughly by

(20)
X ~+(24RCM s~in2A A6, )

K. Crystal and source heights normal to the
generatrix

The effects of crystal or source height, independently,
result in detected locations off the generatrix, so that quoted
shifts37.40 assume no detector resolution in the transverse di-
rection. These formulas treated the average image location
projected onto the generatrix, corresponding to a one-
dimensional detector with a large transverse height (and with
the source on the Rowland circle). With good two-
dimensional detectors and a finite crystal height, but a neg-
ligible source height (or, theoretically, a finite source height
with a negligible crystal height), there would be no mean
shift of the profile on the generatrix from this source.

Once again, these two dimensions are coupled, so that if
the crystal and source widths in the transverse direction are
both significant, the centroid in the central detector region
shall be shifted as follows:

AA h2
A 24BX2 '

h2(2Rz)sin Op

24 BX2 cos

(21a)

(21b)

For an aligned source and crystal on the Rowland circle
(BX=BP=2R. sin Op, cf. Fig. 9), this yields the modified
standard formula

' 24(2R,92 sin2" Op'

AY= 2 4 (2 Rz)sin Op cosOp

(22a)

(22b)

with an additional contribution due to the detector resolution
element, but where

hoBP h _zo2Rz sin 

hi= 2Rz sin Op' ° 2R, sin 6+BP
zoBP Ih> zo2Rz sin 6

2R. sin Op+BP' ° 2 Rz sin O+BP

(23)

Here ho is the crystal height (in the transverse direction)
and zo is the source height. If the projection of zo at the
crystal is equal to ho, a maximum effect occurs which is only
20% of that given by the formulas in Refs 37, 40. The maxi-
mum shift for a ray at height hI compared to one on the
generatrix is 12 times these values (as in the standard formu-
las).

In the in-circle geometry, this potentially dominant shift
is reduced by lateral shifts and the effect of changing curva-
ture on the diffraction profile, asymmetry, and depth penetra-
tion. Here the full detailed ray tracing may be expected to
reveal such additional shifts, but are of secondary interest in
the current exercise.
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For the source lying on the Rowland circle, the trunca-
tion at low angles and slow dispersion (slow change of dif-
fracting wavelength with position) requires long crystals to
image the radiation, adding other shifts, combined with large
and negative off-axis shifts to image the peaks back near the
original detector location (0mma). The total shift in general has
the same sign as in the above expression, but with the mag-
nitude reduced by a factor of 10 or so in typical cases. Once
again, this sensitivity to alignment can often preclude preci-
sion measurement.

The magnitude of this coupled correction can be several
hundred ppm, ns indicated above, so this off-axis shift must
be allowed for in order to compare wavelengths at or below
the level of refractive index corrections. Precision compari-
sons to calibration lines or calculations are simplified greatly
if the crystal width along the generatrix does not limit or
truncate the diffraction profile significantly; while adequate
resolution in the transverse direction may be assumed to
eliminate much of the broadening discussed relating to crys-
tal and source heights ho and zo.

Relative measurements with calibration sources and
sources of unknown spectra arising from the same geometric
location are able to reduce or allow for the effect of these
geometrical shifts arising from finite dimensions. It should
be noted that the functional dependence of Eqs. 20-23 are
sensitive to the relative magnitudes of diffraction widths,
source dimensions, and crystal dimensions. These dependen-
cies are not generally constant functions of angle, so the
effects are not canceled by differential measurement. This is
particularly true when triangular crystals are used (so that the
crystal height can vary with diffracting angle) or when scan-
ning methods adjust the source relative to the Rowland circle
(so that OA,, and Op, are varied). In addition, the shift of
source centers is often significant, and yields potential sys-
tematic shifts in the final result which should be considered
in subsequent analysis.

L. Secondary corrections

Corrections to the above prescription include the deriva-
tion of a mean dy value from estimates of asymmetry with
curvature taken into account and the inclusion of extinction
accurately and explicitly in Eqs. (l10)-18).

An additional qualitative correction is obtained for (pho-
tographic) detectors placed on the Rowland circle. This is
also geometric, but depends on absorption coefficients. Such
detector shifts in the use of photographic emulsions at non-
normal angles can exceed the 10 ppm level. Using the sub-
script e for the emulsion thickness and attenuation, this
yields a simple angular dependence:

[f t /sin 0B - ALzdz cos 6
AY Z= f t /sin 0e- /eZdz 

At' < sin 6
2 tanO' " r
Cos 69 sin 6

te

10" 

0.3 0.66 0.94 1.22 1.50
®, rad

HIG. 16. (a) Tertiarv effects. Emulsion shifts for PET 002 and PET 008
diffraction and t,=13 urn assuming 2R, scaling (dashed line and *-, re-
spectively), compared to the mean shift in diffracting angle for IT polariza-
tion (dots and slowly increasing solid line) and maximum lateral shifts (rap-
idly decreasing solid line and -- ). The lateral estimates use Eqs. (16c) and
(i16d), (14b), (10), and (11a) with /_c provided by the absorption coefficient
only.

Using a standard thick-emulsion x-ray film with one emul-
sion removed for higher resolution and assuming te 13 /-cm
(cf. Ref. 45) leads to significant relative shifts as indicated in
Fig. 16. The emulsion shifts can readily exceed those for
lateral detector shifts and mean diffracting angle shifts, in the
appropriate regimes. At general angles, all three effects can
be important, though often one may be less than a 1% per-
turbation on the others. Use of electronic or other detectors at
normal incidence can eliminate this shift at the expense of
off-Rowland circle defocusing.

Mosaicity has small effects on centroid location for
curved crystals, defocusing or broadening asymmetric pro-
files to center more on Oc than 6Op. The overall asymmetry
can significantly affect the centroid determination of experi-
mental profiles, dependent on the fitting function. Doppler
broadening and natural linewidths will convolve the asym-

10'

E

LU

II
(NI

E4

-iu

0-40 0.65 0.90
@, rad

1.15 1.40

HIG. 16. (b) Emulsion shifts for ADP 101 and ADP 404 diffraction (solid
line and -- , respectively) and t, = 13 uzm, compared to the magnitude of

(24) lateral shifts from depth penetration(, -) Lateral shifts use Eqs. (17b),
(18), (10), and (Ila), with As including computed mean extinction for IT

polarized radiation, and follow the in-circle geometry indicated in Fig. 14.
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metry and lead to an uncertainty in centroid determination.
Some of these corrections require evaluation of a (full)

dynamical diffraction theory; others require careful ray trac-
ing from the source, inside the crystal, and to the detector.
These two requirements are not fully separable. A program
has been developed which addresses these corrections in a
consistent way and to higher order, including dynamical dif-
fraction theory.'8' 19

Potentially significant effects, not addressed above, are
the change of diffraction plane orientation and 2d spacing,
and hence the diffracting angle, as a consequence of the cur-
vature stress, which may vary with position on the crystal.
There is often additional longitudinal and transverse curva-
ture as a result of the bending technique and moments and
the isotropic or anisotropic compliances or elasticities of the
crystal. Such curvature will give effects in the finite source
and crystal height and length considerations of previous sec-
tions. It also leads to curvature of the diffracting planes, and
hence changes with depth of the orientation of an incident x
ray to these planes. This has been addressed above, within
the assumption that the planes remain at a constant angle to
arcs from the axis of the cylinder. For symmetric Bragg re-
flection this is exact, while for symmetric Laue diffraction it
is true for isotropic materials. In other cases this assumption
has limitations leading to tertiary effects in near-symmetric
diffraction.

The impressed curvature results in compression of the
lateral spacing of the front surface layers and an expansion of
lateral spacing of the rear surface, but also gives a variation
of lattice spacing normal to the surface (following Poisson's
ratio v=0.25). This can have a large effect on diffracting
angles at the surface compared to the neutral plane at the
center of the crystal (equivalent to the unstressed crystal) and
can further reduce the range of depths over which diffraction
is coherent.' 9 Form factors can also be redistributed as a
result of these stresses. The last two effects are usually mi-
nor. Given allowance for the surface d spacing (a potentially
large shift to lower angles, but a constant offset in AM/A for
all source lines), this change of effective Bragg angle with
depth leads to a mean diffracting angle shift proportional to
the mean depth d and positive for near-symmetric Bragg
reflection: d

A Oi v tan 062 (25)
For low order diffraction or low energy x rays, this is

often negligible, but for intermediate energies can reach
AAXIX1-5X 10-6, or greater. The shift is zero for plastic
deformation as is common with formed mountings for im-
pressing curvature, or for highly mosaic crystals which
would also tend to deform plastically. The value and func-
tional form in the elastic case is also dependent upon the
crystal shape and stress distribution. This issue is discussed
in greater detail in Refs 46 and 47. In symmetric Bragg dif-
fraction, these effects are often tertiary or negligible with
respect to the contributions discussed earlier.

M. Discussion

Experiments using curved crystals and requiring abso-
lute wavelength determination to better than 1O0 ppm in the

x-ray regime must generally involve careful consideration of
a wide variety of effects in addition to refractive index cor-
rections. Flat crystal modifications to simple estimates of re-
fractive index corrections have been discussed in Sec. II
(asymmetric Bragg diffraction, profile asymmetry, three-
beam interactions), and are also relevant here. While they
can be significant or dominant compared to the refractive
index correction itself, even for curved crystals, these contri-
butions are relatively straightforward. Variation of angular
shifts with Bragg angle can follow tan 0, cot 0, or 6 indepen-
dent relations, with particularly strong local features and al-
ternate dependencies near edges or near three-beam diffrac-
tion points.

For most curved crystal geometries, additional systemat-
ics in the diffraction process occur at or above this level.
Asymmetries of diffraction profiles due to penetration of the
x-ray field inside curved crystals can dominate over the re-
fractive index corrections, particularly for high-order diffrac-
tion or medium-energy x rays. The shift of the mean angle to
the diffracting planes and the lateral shift around the crystal
surface of the exit location relative to the incident location of
the photon are related and significant, but are often smaller
contributions, at the 10%-20% level of the refractive index
corrections. Contributions to the mean output angle at the
crystal surface can give cot 6 or cos 6/sin3 0 dependencies,
but often lead to intermediate behavior with complexities
from edges, polarizations and cos 20 factors, and geometric
considerations. These effects are correlated with Johann ab-
errations, involving off-axis shifts and potentially large scal-
ing corrections, especially for geometries with the source
lying on the Rowland circle or near the minimum angle of
the curved crystal spectrometer.

For precision experiments, on-circle geometries should
be avoided to minimize arbitrary and sensitive profile trun-
cation shifts from crystal ranges or minimum grazing angles,
and to avoid extreme scaling corrections. Geometries with
the source well inside the Rowland circle are generally more
appropriate for absolute angle measurement or for compari-
son to suitable calibration lines, due to the greater bandpass
and smoother, smaller scaling corrections. Hence nonideal
Johann arrangements can provide improved measurements
compared to the on-circle ideal. In either case, these off-axis
shifts and nonlinearities exhibit strong and rapidly varying
angular dependencies, which distort the results given earlier.
However, simple functional relations are provided and illus-
trated for these effects. These indicate angular dependencies
for interpolation or extrapolation purposes with regard to
calibration lines, and are often accurate to a few percent of
the effect or of refractive index contributions. The lowest
precision for individual, smaller contributions are typically
within a factor of 2 or 3.

Source and crystal dimensions interact with defocusing
shifts and diffraction corrections. Literature results often in-
volve restrictive or inappropriate assumptions, and can ne-
glect corrections of large magnitude. Current results indicate
that one-dimensional extensions often yield null shifts, but
that large shifts can arise from the coupling of two finite
dimensions. Relations are also provided for these contribu-
tions. The magnitudes and significance vary greatly from on-
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circle to in-circle geometries, and tend to recommend the
latter. The combination of significant source and crystal di-
mensions along the generatrix can lead to significant on-
circle shifts but quite large (and well-defined) in-circle cor-
rections. This is also true for significant source and crystal
heights normal to the generatrix. Dependencies approximat-
ing 1/sin2 0 can be obtained for these effects, in appropriate
regimes, and with significant offsets as discussed above.

Ideally the crystal width along the generatrix should not
limit or truncate the diffraction profile significantly, thereby
avoiding a strong dependence upon source and crystal geom-
etry and alignment. Adequate resolution in the transverse di-
rection can minimize the effects of crystal and source
heights. Centroid shifts due to detectors lying on the Row-
land circle (or at general angles to incident x rays) can be
significant. The precision of profile shifts can be limited at
0.1%-1.0% of the refractive index corrections by form fac-
tor uncertainties, in optimum cases.

Measurements of unknown wavelengths relative to a
nearby calibration line by extrapolation can increase the final
measurement precision by an order of magnitude, but require
an understanding of the functional relations indicated above
for higher precision. This can be estimated to first order by
the slope of response between several calibration lines. Pre-
cision of absolute shifts assumes that relative measurements
are made in the same order and with nearby Bragg angles,
away from absorption edges and away from extreme spec-
trometer angles. Multiple-beam interactions are generally not
determined or accounted for in such calibrations. If the azi-
muthal angle is inadequately known, other methods must be
used to consider the importance of these effects, as indicated
earlier.

The variation with angle of several component effects is
often far from constant or linear, so problematic regimes
should be avoided, or expected functional dependencies and
relative magnitudes should be understood. The series of
shifts due to finite source and crystal dimensions are gener-
ally more serious for such relative measurements, since dif-
ferent off-axis shifts may arise for the different sources due
to their geometric location in space.

Complexity of shifts with order and polarization in spec-
tra necessitates calculations of the sort indicated here for
precision below 1% of refractive index corrections. Curved
crystal profiles require lamellar thicknesses defined consis-
tently with respect to finite thickness widths and Ay values,
allowing for coherence between lamellae, especially for
higher order diffraction. The calculated shifts agree well with
the sum of simpler estimates, reproducing the dependence on
the Bragg angle. The importance of correct allowance for
depth penetration and other diffraction effects is also clear.
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