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ABSTRACT: We investigate established theoretical approaches for the determi-
nation of electron energy loss spectra (EELS) and inelastic mean free paths (IMFPs)
in solids. In particular, we investigate effects of alternate descriptions of the many
plasmon resonances that define the energy loss function (ELF), and the contribution
of lifetime broadening in these resonances to the IMFP. We find that despite
previously claimed agreement between approaches, approximations of different
models consistently conspire to underestimate electron scattering for energies below
100 eV, leading to significant overestimates of the IMFP in this regime.

■ INTRODUCTION
The electron energy loss function is a prime quantifier of the
interaction between a bulk material and a moving electron. It
represents the probability of a scattering event in which the
energetic electron transfers energy ℏω and momentum ℏq into
the medium, via plasmon or single-electron excitations.
Determination of the energy loss function is crucial for
understanding elementary solid-state interactions and, in
particular, is the principal determinant of the inelastic mean
free path, a critical parameter in X-ray absorption fine
structure,1 X-ray photo- and auger-electron spectroscopy,2

electron energy loss spectroscopy,3 imaging,4 and nanoscale
structural determination.5 Through electron energy loss
spectroscopy, the energy loss function provides detailed
information regarding physical and electrical properties of
materials6 and has even seen recent application in high profile
work investigating the role of aerosols in climate change.7

It is standard to express the energy loss function of a given
medium as the imaginary part of the negative inverse dielectric
function, Im[−1/ε(q,ω)]. We define the real and imaginary
parts of the energy- and momentum-dependent dielectric
function as ε1(q,ω) and ε2(q,ω), so that we have
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General expressions for ε1(q,ω), ε2(q,ω), and Im[−1/ε(q,ω)]
can prove difficult to obtain for arbitrary solids, with intrinsically
q-dependent theory claims typically limited to a few electronvolts
above the Fermi level.8 First principles calculations may more
readily be made, however, for the special case of a nearly free
electron gas, in which electron interactions with a lattice
potential are neglected.9 This result, referred to as the Lindhard
equation for ε(q,ω), can be used as a starting point for a general
solid by implementing the statistical approximation.10 This

approximation treats the solid as a collection of small regions of
definite charge density corresponding to nearly free electron
gases. Accordingly, we can treat the energy loss function as a sum
of Lindhard terms, where the Lindhard dielectric function is
defined as follows:
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ωp represents the plasma frequency of the nearly free electron gas,
and vF and qF are the Fermi velocity and momentum, respectively.
We can use eq 1 to determine the energy loss function (ELF)
produced by each Lindhard term and sum together terms based
on different ωp’s, with different relative amplitudes. This allows
us, in principle, to produce any arbitrary ELF at a given value of q.
The value of this approach arises from the availability of ELF

data at q = 0 from either density functional theory11 or, more

Received: October 20, 2011
Revised: February 6, 2012
Published: March 5, 2012

Article

pubs.acs.org/JPCA

© 2012 American Chemical Society 3202 dx.doi.org/10.1021/jp210097v | J. Phys. Chem. A 2012, 116, 3202−3205

pubs.acs.org/JPCA


commonly, experimental techniques.12 If we have an
experimental (or theoretical) determination of the ELF,
Im[−1/εexp(0,ω)], we can determine the amplitudes, Ai, of
the Lindhard terms following
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We can then use the Lindhard expression to determine ε(q,ω)
and Im[−1/ε(q,ω)].
This approach is relatively simple due to the property of the

Lindhard equation that it produces, for each component, a delta
function in the ELF. This enables us to reproduce the
experimental ELF exactly at q = 0, the optical limit, and
makes the determination of the amplitude factors trivial. This is
an example of a many-pole model; however, we will refer to it
more specifically as a partial pole model, on the understanding
that in practice a “real” plasmon resonance may, within this
model, be represented by a summation of many terms. Despite
differences in our expressions, this corresponds to an approach
used by Tanuma et al,13 whose IMFP results are among the
most widely cited in the literature. Another example of a partial
pole model is that used by Sorini et al.,14 who utilize a simpler
dispersion relation in place of the Lindhard equation, and then
use this to extend calculated optical ELFs to the region of finite
momentum transfer.
The main alternatives to this kind of model are the Drude

andMermin approaches, which also employ a component-based
fitting to an externally determined optical ELF. The principal
difference is that these approaches include an additional
lifetime broadening term, γi, for each plasmon or scattering
resonance included in the ELF, which typically results in only a
small number of terms being needed, of order 1−10. Such a
representation implies that these models are explicitly many-
pole models, but not partial pole models, as each component is
designed to correspond with a particular physical excitation.
Due to the classical basis of the Drude approach, the current
work will focus solely on the Mermin approach, and on its
relationship with the partial pole model. This investigation will
reveal that the theoretical result for low and medium energy
ELFs and inelastic mean free paths are not consistent and have
not yet converged to a unique result, even for classic materials
such as copper.

■ METHODS
The Mermin approach requires the addition of a broadening
term γ to the Lindhard equation. One may naiv̈ely suggest
simply adding an imaginary component to the expression for u
such that
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u u
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This indeed broadens the plasmon resonances. However, it is
not an acceptable strategy as it does not preserve the local
electron number in the ELF.15 This is evidenced by its breaking
of the Kramers−Kronig sum rule.16 Instead, Mermin suggested
an alternative extension of the Lindhard equation as follows:17

ε ω =

+
+ γ ω ε ω+ γ −

+ γ ω ε ω+ γ − ε −

q
q

q i q

( , )

1
(1 i / )[ ( , i ) 1]

1 (i / )[ ( , ) 1]/[ ( ,0) 1]

M

L

L L (8)

This equation has several compelling properties, but most
particularly it preserves the Kramers−Kronig sum-rule
regardless of the value of γ, and also
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So our partial pole model is explicitly a special case of the
Mermin model, where ∀i,γi = 0. The Mermin model is not the
only plausible broadening extension into q-space, but it is the
most popular.

■ RESULTS
We can investigate the effect of the nonzero broadening in the
Mermin model by examining the ELF produced by, in the
simplest case, a prototype material with a one-component
Mermin dielectric function, and comparing this to the results
obtained using a partial pole representation with the same ELF
in the optical limit. For this analysis we use a prototype
function where our Mermin parameters are ωp = 25 eV, γ =
25 eV, and Ai = 0.8.
Figure 1 shows the difference in the q-dependent ELFs of the

two models. Both approaches lead to an effective broadening of

the peak as the momentum transfer ℏq is increased. This
broadening is greater when the one component Mermin picture
is used, whereas the partial pole model predicts a thinner peak,
with a higher-energy peak position. This effect is zero at the
optical limit and increases monotonically for higher values of
ℏq. The variation is also greater for wider peaks, as is clear from
the convergence of the Mermin and partial pole models in the
limit of a delta peak (γ = 0). This difference has a considerable
impact on the IMFP, λ.18
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where a0 is the Bohr radius. EF is the Fermi energy, explicitly
defined in this work as the energy corresponding to the
electronic state with occupation probability of 0.5, and is
measured relative to the bottom of the conduction band. q± are

Figure 1. Evolution of a prototype one-component electron energy
loss function from (A) the optical limit to (B) q = 1 Å−1, (C) q =
2 Å−1, and (D) q = 3 Å−1. The dashed blue curve utilizes a Mermin
model extension, peaking at lower energies than the solid red curve,
which uses a partial pole representation. The two models coincide as
the black curve in the optical limit.
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momentum-transfer limits, determined kinematically and given
by
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For our prototype material, we set the Fermi energy to zero
and present the resulting IMFPs in Figure 2 using each ELF

representation. The effect is dramatic, with deviations in excess
of 25% between 25 and 40 eV. The two approaches become
more consistent at very low energies, with the results
converging as the energy closely approaches 0 eV, whereas
the percentage difference slowly decreases, but does not
disappear, as the energy increases well above 100 eV.
Because we are here considering only a single component

Mermin spectrum, we can see that these results may be easily
generalized. If, for an arbitrary Mermin type resonance of width
γi, the ELF broadens at a greater rate with q than is seen with a
partial pole representation, then this will happen for a general
spectrum made up of many Mermin components. This will also
correspond to a reduction in the resulting electron IMFP for
any general material. The only variable in this effect will be the
extent to which it occurs, which will be zero for spectra (or
partial spectra) where γi = 0, and increasing for higher widths.
It is now profitable to consider explicitly the extent of the

effect for a real material, for which we will choose copper as an
example. For the optical ELF we utilize a widely cited
experimental data set from Hagemann et al,12 and a previously
published Mermin-type fit to this data.19 These optical loss
spectra are shown in Figure 3.

■ DISCUSSION
The two spectra allow us to produce three separate IMFPs for
copper: one using the Mermin approach from Abril et al.’s
parametrization, one using a partial pole representation of this
Mermin fit, and one using a partial pole representation of the
original experimental data. The results are plotted in Figure 4

with energies relative to the Fermi energy, which we take as
7.0 eV for copper. Also shown is a recent measurement
obtained from XAFS experiments.20

The use of the Mermin terms in the q-extension results in
IMFPs that are more than 15% lower for a large part of the
energy range shown. This is a smaller effect than seen with the
prototype material in Figure 2 but remains substantial. This is a
particularly important result, as it is near certain that the true
physical system consists of plasmon and other scattering
resonances of varied lifetimes, some of which can be reasonably
expected to be similar to those proposed by Abril et al. in their
fitting. It can be inferred from the known optical spectrum that
substantially broader peaks of high amplitude are not present,
but it is quite reasonable to expect that the IMFP could lie
anywhere between the partial pole (solid red curve) and
Mermin (dashed blue curve) results shown in Figure 4. Further,
our approach, as in previous work,15,21 utilizes characteristic
broadening values for each plasmon resonance. As discussed by
Egerton,6 real plasmons are more likely to instigate single
electron excitations at higher momentum transfers, and
therefore we should expect even shorter lifetimes, and thus
greater broadening, as q is increased.
Our results are particularly striking when compared with the

experimental data (dotted green curve). Agreement with
experiment is improved significantly across the energy range
shown, with the Mermin-based calculation coming very close to
falling within the error bars at energies around 100 eV. At lower
energies, below around 40 eV, experimental issues such as beam
bandwidth and model dependence may cause errors in the
measured data, and the theory is also quite sensitive to any errors
in the optical ELF. We do find excellent evidence for our
approach, however. We see the greatest agreement in the region
where both the experimental and theoretical determinations
should be considered most reliable, and we also see that such
agreement is not apparent when the partial pole model is used.
These outcomes are somewhat different from some that have

been reported previously. In a recent paper from Tanuma et al.,13

IMFP results from the Penn model, which is a partial pole

Figure 2. Electron inelastic mean free path of a prototype material
defined by the optical energy loss function of Figure 1. The dashed
blue curve uses a Mermin model for the extension to finite momentum
transfer, whereas the solid red curve uses a partial pole model. Despite
using identical optical data, these approaches give substantially
different results, with variations of over 25% between 25 and 40 eV.

Figure 3. Comparison of the experimental optical energy loss function
measured by Hagemann et al.12 and a Mermin fit to this spectrum
from Abril et al.19 The Mermin fit necessarily introduces errors in the
inelastic mean free path; however in this case these errors are small
relative to the effects of plasmon lifetime broadening.

Figure 4. Calculations of the electron inelastic mean free path for
copper. The dashed blue curve represents a Mermin model calculation,
with optical data fitted to the experimental results of Hagemann et al.12

The solid red curve is a partial pole calculation performed using the
fitted optical data, and the dot-dashed black curve uses a partial pole
model with the original experimental optical data. The dotted green
curve is an experimental result, with three standard deviation
uncertainties.20
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model, are compared with results produced by Denton et al.21

using a Mermin model. The materials compared are aluminum
and gold, which is a particularly interesting comparison given
that aluminum represents a very thin optical energy loss
spectrum that should yield a similar IMFP irrespective of the
model used. Conversely, gold possesses a broad loss spectrum
where the effects of the wide Mermin peaks should be significant.
Unlike in our comparison, Tanuma et al. stated that the

Mermin approach yields higher IMFPs than a partial pole
approach for most of the energy range of interest to this paper,
and that this holds for both aluminum and gold despite their
starkly different optical loss spectra. The results are shown to
converge well at high (kiloelectronvolts) energies for both
materials. We attribute the conclusion of that paper to the use
of an inconsistent version of eq 10 used by Tanuma et al. and
by Denton et al. Though Tanuma et al. use an expression
equivalent to ours, Denton et al. impose an extra condition on
the range of the energy integral dω. They propose that the
maximum range of integration should not exceed ωmax, where
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The extra limit of E/2ℏ is claimed to be justified by the
indistinguishability of the incident electron from an excited
secondary electron. Though this is a valid argument for particular
single electron excitations, it is not valid in general for excitations
involving inner-shell electrons. This is because, under the
approximation that all eigenstates are filled up to the Fermi
level, such excitations require the transfer of a minimum binding
energy. Therefore double-counting of transitions does not arise
until well beyond the limit of E/2ℏ. More importantly, the
truncated integration limit does not apply to the case of plasmon
excitations, which are commonly the dominant cause of inelastic
losses in the energy range of interest here. This is because a
plasmon of well-defined energy is clearly a distinct entity to an
energetic single electron, and is thus distinguishable. In any
event, a meaningful comparison between the two models can
only be achieved when the range of integration is consistent.
Another recent paper from de la Cruz and Yubero compared

IMFP results from Mermin and partial pole models.22 This
work utilized consistent integration limits, and therefore
produced results qualitatively similar to our own, demonstrat-
ing the validity of our assessment that broadening must
produce a reduction in IMFP values that spans all energies and
materials. They also found a remarkable consistency in the
magnitude of the effect, observing a linear relationship between
IMFPs determined via Mermin and partial pole approaches for
energies higher than 200 eV. Our work, focused on lower
energies, demonstrates the breakdown of this relationship. We
also improve on the analysis by explicitly using a Lindhard type
partial pole model, rather than the simplified model used by de
la Cruz and Yubero. A crucial advantage of this is that our
approach satisfies eq 9, so that our results directly interrogate
differences caused by the inclusion of finite broadening γi.

■ CONCLUSIONS

Our results raise the issue that the most popular approaches to
theoretical determination of ELFs and IMFPs have surprising
variation and are not consistent. In ideal cases this is likely to
lead to discrepancies or errors of 25% or more.
Our results demonstrate that for a typical transition metal

such as copper, significant uncertainty of 10−15% or more

exists in the theoretical IMFP for a range of energies below
100 eV. This uncertainty is greater for materials characterized
by broad optical loss spectra, such as gold, despite previously
claimed agreement between these approaches and relatively
minor for nearly free-electron-like materials such as aluminum.
In particular, the bulk of tabulated IMFPs may be expected to
represent an approximate upper limit on the likely true values,
due to the prevalence of either partial pole type models
involving lossless plasmons, or models involving integration
limits that are particularly inappropriate at low energies.
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