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I. Introduction

The theory of dielectric response is critical to our under-
standing of optical and electronic interaction phenomena in 
condensed matter systems. From photo-absorption to electron 
scattering, to charge transportation, optical resonances and 
dynamical diffraction, robust dielectric modelling and com-
putation is a key tool for quantification of the material prop-
erties that govern these interactions. While the fundamental 
physics required for these models has been established to high 
accuracy for several decades, applications of such models to 
real-world solids are still necessarily subject to a number of 
limiting approximations.

These approximations vary dramatically in scope and sig-
nificance. For example, neglect of QED effects such as the 
vertex correction or the absence of fermionic exchange may 
not contribute significant errors in electron scattering theory 
in most practical situations [1]. Secondary excitation lifetimes 

and coupling between excitation channels, however, may con-
tribute significantly for low-energy electron scattering (less 
than a few hundred electronvolts) while remaining relatively 
inconsequential for kiloelectronvolt electrons [2].

In this work we are concerned with approximations 
regard  ing the dispersion relations of electronic excitations in  
media with complex band structure—i.e. real world solids 
and other condensed matter systems. These approximations 
commonly arise in electron scattering models via the use of 
classical or semi-classical dielectric theories. Such theories 
are justified in the context of calculating bulk scattering prop-
erties by their formal agreement with quantum-mechanical 
models for the limiting cases of optical excitations (or, strictly 
speaking, excitations with zero momentum) [3] and excita-
tions with very high momenta [4]. For finite low-momentum 
excitations, however, these models produce markedly dif-
ferent dispersion relations that impact directly upon the pre-
dicted velocity of collective and single-electron oscillators, 
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thus altering our conclusions regarding the transport behav-
iour of these particles.

Alternative models such as advanced density functional 
theory (DFT) using local density or GW approximations are 
similarly subject to a number of simplifications that become 
increasingly severe for continuum and finite-momentum 
excitations [5, 6]. Given that such calculations are becoming 
increasingly common in studies of electron transport phe-
nomena [7, 8], it is important to investigate the physical and 
mathematical constraints that must be applied to assess the 
validity of their results.

In recent work investigating the lifetime broadening of low-
energy electronic excitations [2], it was discovered that the 
quantum dielectric theory predicted a path of local minima in 
the broadening function corresponding to the dispersion rela-

tion of a non-relativistic classical free particle, E p

m2

2

= . This 

feature persists in different materials and appears independent 
of the solid-state band structure. Here we elucidate the cause 
and physical significance of this feature, and demonstrate its 
significance by contrast with alternative models.

II. Generalised oscillator strength and the Bethe 
ridge

The basis of the dielectric theory is the complex dielectric 
function q,( )ωε , corresponding to the ratio of the observed 
potential within a medium to the initial potential applied by 
some external field [9]. In the case of the external field pro-
duced by an incident energetic electron, it is convenient to 
present the energy loss function (ELF), defined as the imagi-
nary component of the inverse of the dielectric function, i.e. 

⎡
⎣

⎤
⎦ELF Im

q

1

,( )
=

ω
−
ε

.

This formulation is useful for the calculation of scattering 
properties, as the ELF is proportional to the matrix element 
for electronic transitions within the first Born approxima-
tion [10], and therefore can be considered as a relative prob-
ability for a medium to accept an excitation with energy ω�  
and momentum q�  [11]. The simplest example of this is for 
a nearly free electron gas (FEG) or jellium system. Within an 
FEG, there exists a single resonant frequency ωp such that, in 
the limit q 0→ , the ELF becomes

ω
π
δ ω ω

−
= −

⎡
⎣⎢

⎤
⎦⎥

Im
1

0, 2
.

FEG
p( )

( )
ε

 (1)

In a real medium, there may exist many excitation chan-
nels with varying relative probability amplitudes. We there-
fore write the ELF for a general material in terms of these 
excitation channels as

( ) ( )ε ε
∑ω ω ω ω

−
=

−
=

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥AIm

1

0,
Im

1

0, ;i
i

ip FEG

 (2)

where the values Ai are commonly known as oscillator 
strengths. For a material with a known overall charge density, 
the sum of these oscillator strengths is subject to a number of 

causal constraints that are expressed by well known optical 
sum-rules [12, 13]. The oscillator strengths correspond to 
particular excitations characteristic of the absorbing material, 
and their magnitudes may be calculated using an appropriate 
implementation of DFT [14].

When the ELF is expressed in the limit q 0→ , it is said to 
exist in the optical limit, as the momentum of an optical exci-
tation is very small relative to that of most electronic excita-

tions. Accordingly, it is common to refer to ⎡
⎣

⎤
⎦Im 1

0,( )ω
−
ε

 as the 

optical ELF, or the optical oscillator strength (OOS) [15]. The 
complete ELF with explicit q dependence is then referred to as 
the generalised oscillator strength (GOS) [16].

The relationship between the OOS and the GOS is 
dependent upon the explicit q-dependent form of each oscil-
lator i. Each optical oscillator will translate to a generalised 
oscillator following a dispersion equation  defining the rela-
tionship between its energy and momentum. In general, this 
relationship may be modulated by the lifetime broadening 
of each oscillator, or by the interactions between oscilla-
tors. However, such modulations normally are considered to 
be very weak [2] or are neglected entirely [17, 18]. As the 
momentum of each oscillator is increased, its strength will 
correspondingly decrease due to the extension of optical sum-
rules to higher momentum states [19].

The behaviour of the oscillators at very high momenta is 
dictated by the constraint that they act like classical particles 
in the limit q →∞. Indeed, regardless of the model employed, 
the (non-relativistic) dielectric behaviour of a single electron 
at rest is defined by a delta oscillator existing along the path 

q

m2

2

ω = �  for all energies [20]. For a many-electron material, 

this behaviour will only exist at high momenta, and the form 
of the ELF will be broadened in an asymmetric fashion due to 
the electronic band structure [16].

This high-momentum limit is commonly known as the 
Bethe ridge, as it appears as a ridge-like structure in plots of 
the GOS, which historically have been known as the Bethe 
surface [21]. It was originally documented as early as 1930 
[22], and has since been used extensively to guide and con-
strain dielectric models. Many models that exhibit the Bethe 
ridge at high momenta, and match the OOS at q  =  0, have 
historically been considered sufficient for tabulations of elec-
tron inelastic mean free paths (IMFPs) and stopping powers, 
as only long-range integrals of the GOS are required to deter-
mine these material properties [23–25]. Recent work has 
shown that the dispersion relation at intermediate momenta 
can, however, have a significant impact for low-energy 
tabulations [26, 27], and moreover the choice of dielectric 
modelling has a much more significant impact on the fun-
damental understanding of the transport properties of bound 
excitations.

III. Dispersion of electronic excitations

To describe the dispersion of electronic excitations that make 
up the ELF, or GOS, the simplest option is to take a purely 
classical view. In this case the energy of the excitation is 
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simply set to its resonant energy plus an offset from the square 
of its momentum, yielding

q

m2
q i

2

ω ω α= +
�

 (3)

where qω  is the energy of the i th oscillator at momentum q� . 
This dispersion relation was routinely used in early work with 
optical data models of dielectric response, with the α param-
eter set to unity to ensure agreement with classical physics 
at high momenta, and convergence to the Bethe ridge. Some 
modern works have used alternative values of α to test elec-
tronic behaviour at intermediate momenta [7, 18]; however, 
these may only represent physical models if α converges to 1 
in the limit q →∞ (e.g. as in [28]).

An alternative to this classical dispersion relation is a semi-
classical equation  in order to improve agreement with the 
quantum theory near the optical limit. In this case a quartic 
relation is commonly used:

⎛
⎝
⎜

⎞
⎠
⎟v q

q

m2q i
2 2

F
2 2

2 2

ω ω β= + +
�

 (4)

where vF is the Fermi velocity, calculated for each resonant 
oscillator in terms of its energy in the optical limit,

⎛

⎝
⎜

⎞

⎠
⎟v

m

m

e

3
.i

F

2 2

2

1/3
π ω

=
�

 (5)

The β parameter is most often set equal to 1/3, enforcing 
agreement with Thomas–Fermi theory for low-momentum 
excitations [29, 30]. Such a formulation is most notably 
employed in the IMFP tabulations of Tanuma, Powell, and 
Penn for energies above 330 eV [31]. In other work, a β value 
of 3/5 is suggested [32], and we will consider both options in 
this analysis.

Quantum dielectric theory is significantly more complex 
and does not lend itself to a simple expression for the dis-
persion relation of electronic excitations. Nonetheless a dis-
persion function may be mapped by following the theory of 
Lindhard [33], which provides a dielectric function q,( )ωε  
explicitly in terms of the energy and momentum transfer as 
follows:

q
q

f f

E E

e k k q
k q k

, 1
4

.
k

2

2

0 0

( ) ( ) ( )
( ) ( )∑ω

π
ω

= +
− +

+ − −
ε

�
 (6)

Here the summation is over initial states in the absorbing 
material of momenta k, with f k0 ( ) being their energy distri-
bution. Taking f k0 ( ) as the Fermi distribution and integrating 
over momenta yields the well known result

ω
ω

= +q
q v

f, 1
3 p

L

2

2
F
2

( )ε (7)

where
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(8)

This is expressed in term of dimensionless parameters z 
and u, which are given by

u
qv

z
q

q
,

2
.

F F

ω
= = (9)

The use of the Lindhard dielectric function for individual 
oscillators of plasma frequency ωp enables a quantification 
of the peak energy in the Bethe surface at different values 
of momentum, and hence a determination of qω  from the 
quantum theory. This formulation explicitly neglects excita-
tion broadening, which may only be included in a physical 
fashion by the extension of the Lindhard function to a Mermin 
function [34]:

ω
γ ω ω γ

γ ω ω γ
= +

+ + −
+ + − −

q
q

q q
, 1

1 i / , i 1

1 i / , i 1 / , 0 1
.M

L

L L
( ) ( )[ ( ) ]

( )[ ( ) ] [ ( ) ]
ε

ε

ε ε
 (10)

The parameter γ defines the lifetime broadening of each 
oscillator. Its value has a weak impact on the form of the 
dispersion relation qω , which reduces to that of the Lindhard 
theory when 0γ = .

IV. Group velocity and the electron inelastic mean 
free path

The form of the dispersion relation f q,q i( )ω ω=  can be 
expressed in terms of the group velocity of an excitation 

v q, q q
q( )ω = ω∂
∂

, or loosely the propagation velocity of a pulse. 

In the case of lossless oscillators (i.e. where 0iγ = ) this 
velocity is sufficient to uniquely define the ELF for all ener-
gies and momenta, as it determines the energy–momentum 
relationship of each excitation channel, while the relative 
amplitudes of oscillators are ideally constrained by optical 
sum-rules. For oscillators of finite lifetime ( 0iγ > ), the ELF 
is also affected by the characteristic shape of the oscillators, 
which may be of the Mermin type, the Drude type, or some 
other model [19].

One of the most direct practical applications of the electron 
ELF is in the determination of the electron inelastic mean free 
path (IMFP). Due to the physical interpretation of the ELF as 
a mapping of excitation probabilities, the IMFP E( )λ  may be 
evaluated directly via an integral over the ELF with appro-
priate kinematic limits [35]. This has been performed using 
a number of model formulae and dielectric functions [17, 27, 
31], and here we explicitly consider our recent self-consistent 
formulation given by [2]

( )

( )

( ( ) )

ε

ε

� �∫ ∫ ∫λ
π π

ω

ω

ω γ ω ω
ω ω

=

×
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+
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(11a)

q
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E N
d

d
.i N

q

q
N

,

1

q

( ) ( ) ( )γ
ω

λ δ= Θ −
ω

−� (11b)
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This formula is a generalised version of the classic Penn 
algorithm [1], and is self-consistent via iterations of the exci-
tation broadening function qi( )γ . It takes a known optical ELF 

(or OOS— ⎡
⎣

⎤
⎦Im 1

0,data( )ω
−

′ε
) from some external source, such 

as DFT or experiment, and generalises it to a momentum-
dependent ELF (GOS) using Mermin functions. In the first 
iteration, N  =  1 and ( )γ = ∀q i q0 ,i , meaning that a lossless 
system is modelled and the ELF, and hence IMFP, is directly 

modulated by the group velocity 
q
qω∂
∂

. For higher iterations, the 

group velocity still determines the evolution of the peaks in 

the Mermin term— ω ω′
ω γ ω ω

−
=−

⎡
⎣⎢

⎤
⎦⎥ qIm d d d

q q

1

, , ;i N p iM 1( ( ) )ε
—but 

also directly modulates the broadening function. The IMFP 
is especially sensitive to this broadening for electron energies 
below 100 eV where plasmon resonances are dominant, as has 
been recently demonstrated by our group [26] and others [11, 
36]. It is therefore instructive to consider the behaviour and 
physicality of the group velocity within different dielectric 
models in order to elucidate the fundamental cause of varia-
tions in calculated electron scattering parameters.

V. Excitation broadening and the velocity surface

The excitation broadening function qi( )γ  has also been found 
to have interesting and significant behaviour from the recent 
IMFP study involving coupled plasmons [2]. This function, 
inversely proportional to the lifetime of excitations as a func-
tion of energy and momentum (equation (11a)), was found 
to possess local minima following the classical free-electron 
dispersion relation.

The broadening function is proportional to the product of 
the group velocity of an individual excitation and the inverse 
of its IMFP: 1λ− . These functions are illustrated for the case of 
molybdenum in figure 1 using the quantum dielectric theory 
employed in [2]. The key features corresponding to max-
imum and minimum broadening clearly arise from the form 
of the group velocity surface, rather than the inverse IMFP. 
Therefore local maxima in the group velocity of an excitation 
correspond to lifetime minima, and vice versa.

Figure 1 is plotted in terms of the energies and momenta 
of the excitations; however, care must be taken to interpret the 
energy axis. The values in the figure  correspond to a given 
amount of momentum q�  having been transferred to a reso-
nant excitation with an optical frequency iω . This is why the 
momentum axis is not bounded. If one wishes to plot, for 
example, the group velocity of an excitation in terms of its 
energy and momentum directly, then the energy axis becomes 

qω�  and the momentum becomes bounded by the classical 

limit q m2 q= ω
�

. This kind of plot is shown in figure 2.

In this work we will interpret the results of the quantum 
and semi-classical theories in terms of iω�  (e.g. figure 1), as 
this view lends itself more directly to a physical analysis of the 
validity of each. It is also convenient to treat both the quantum 
and semi-classical group velocities (vq and vsc) in terms of 
their deviations from the classical velocity v q m/c = � . These 
functions, v vsc c−  and v vq c− , are plotted in figure 3. Here we 

use the two literature values for the semi-classical β param-

eter (1

3
 and 3

5
), equation  (4), and the quantum Lindhard and 

Mermin theories with γ equal to zero and 10 eV, respectively 
(equations (7) and (10)).

The classical theory produces a flat surface with velocity 
directly proportional to momentum. However, the semi-
classical and quantum theories produce characteristic fea-
tures in the velocity surface at low momentum values. The 
quantum theories produce clear paths of local minima, which 
when viewed on an absolute scale precisely follow the clas-

sical dispersion line i
q

m2

2

ω = � . These regions correspond to 

maximum-lifetime, or maximally stable, excitation states for 

a condensed matter system. In addition, the quantum theories 
further predict an analogue path corresponding to a maximum 
velocity/minimum lifetime at lower momenta (the ridges in 

Figure 1. Components of the broadening function for electronic 
excitations in a solid—(A) the inverse IMFP and (B) the group 
velocity using quantum theory. The functions are represented in 
terms of the momenta �q of the excitations, and their ‘optical’ 
energies ω� i. The quantum mechanical minimum is seen to derive 
from the group velocity.

J. Phys.: Condens. Matter 27 (2015) 455901
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the corresponding plots). The strength of these features is 
diminished as excitation broadening is introduced; however, 
their positions are not affected so long as the broadening coef-
ficient γ is greater than the optical excitation energy iω .

The semi-classical theories feature either positive or neg-
ative deviations from the classical result, depending on the 
value of the β parameter, but these deviations do not produce 
local minima or maxima on an absolute scale. The semi-
classical velocities do, however, match the classical and the 
quantum results in the limits q  =  0 and q →∞.

VI. Significance

It may come as some surprise that superficially these velocity 
surfaces possess such radically different forms. However, one 
should note that the semi-classical quartic equation (equation 
(4)) is a simple generalisation of the classical quadratic disper-
sion, with only an adjustment to the coefficient of the q2 term. 

The value of 
mv

i

F
2β− ω�  determines the shape of the semi-clas-

sical velocity surface, with values greater than zero leading to 
a maximum relative to the classical result, and values less than 
zero leading to a minimum. A surface similar to the quantum 
result with both maxima and minima would demand a higher-
order dispersion relation.

It is not possible to reproduce the minimal path from the 
quantum theory with local turning points following the free 
particle dispersion relation by using a semi-classical equa-
tion  such as that of equation  (4). One may define a path of 

local minima (or maxima) relative to the classical result by 

adjusting β; however, as this path approaches i
q

m2

2

ω = � , β 

approaches 
mv

i

F
2

ω�  and the depth of the minima approaches zero. 

The case where 1/3β =  is comparatively close to this condi-
tion, especially for high values of iω .

The existence of a well defined trench in the quantum 
velocity surface is important as it represents a maximally 
stable state of excitation that is largely material independent. 
The detailed band structure of the material will then determine 
the cross section  for transitions into this excited state. The 
state is not one with a free-energy dispersion relation, as such 
states are constrained to match the classical result, but rather 
corresponds to a state in which momentum is deposited into a 

plasmon resonance with corresponding energy i
q

m2

2

ω = �  in the 

optical limit. In this instance a small amount of energy will 
also be deposited, and so the final energy qω�  will be slightly 
higher than iω� . The dispersion relations for these maximally 
stable excitations are shown in figure  4 relative to both iω   
and qω .

The phenomenon of minimum values in the velocity sur-
face also has significant impact on the direct evaluation of 
the energies absorbed by resonant excitations using the dif-
ferent theoretical models. The velocity and momentum of an 
excitation are related to this energy via the canonical equa-

tion  v
p

H =∂
∂

, which we can also write as

E v qd
q

0∫= ′� (12)

where this relationship is to be taken as a definition for a gen-
eral excitation. The actual energy of a low-momentum excita-
tion is strongly affected by its interaction with its environment. 
Within the quantum model, the velocity is determined pri-
marily by the resonant optical energy of the excitation iω  
modulated by coupling to alternative excitation channels via 
broadening [2]. As momentum is added to the excitation, 
however, its properties must become more classical, leading 
to the condition

v q
q

m
lim d

2q

q

0

2

→ ∫ =′
∞

�
 (13)

which must be satisfied by any dielectric theory in accordance 
with the correspondence principle. Inspection of figure 3 and 
consideration of the previous discussion on quartic dispersion 
relations clearly shows that the semi-classical theory does 
not satisfy this condition, except for the trivial case where it 
reduces identically to the classical quadratic dispersion. The 
quantum-mechanical Lindhard model, however, has been 
shown numerically to converge to the correct result. This 
holds true even with the generalisation to a Mermin function 
and inclusion of a constant broadening term γ.

VII. Conclusions

It is clear that the energy condition of equation (13) must be 
satisfied for any valid theory, in addition to the Bethe ridge 
constraint, and most probably the existence of a velocity min-
imum along the free-particle dispersion path. The classical 
modelling (equation (3)) can match the first two conditions 
depending on the form of α, but does not predict the minimum 

Figure 2. The group velocity of excitations in a condensed matter 

system 
q

qω∂
∂

, as a direct function of the energy of the excitation ω� q 

and its momentum �q using quantum theory. The momenta are 
constrained by an upper bound corresponding to the dispersion 
relation of a free particle.

J. Phys.: Condens. Matter 27 (2015) 455901
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in the velocity surface. The Bethe ridge condition requires 
only that equation (3) must have 1→α  as q →∞: that is, α 
is not a constant unless it is precisely unity. If it is a variable, 
then it must also average to unity in order to conserve energy.

The semi-classical forms actually perform worse than 
their classical analogues. Although they adhere to the Bethe 
ridge constraint, they neither conserve energy nor predict the 
velocity minima irrespective of the choice of β. The Lindhard 
and Mermin formalisms, however, exhibit the correct behav-
iour, and notably do so regardless of the broadening of excita-
tion channels, making them valid forms for a self-consistent 
scattering theory such as that expressed by equation (11).

Although the Bethe ridge constraint has long been used to 
assess dielectric theories, this is the first time that a variety 
of models have been assessed in terms of the energy condi-
tion and velocity minima. It has been shown extensively that 
alternative theories with different dispersive behaviour lead to 
significantly different scattering coefficients [24, 31, 37], but 
they have not previously been robustly interrogated to dem-
onstrate the underlying physical basis of their predictions. 
Given the new evidence presented here, there is a strong case 

for the abandonment of the currently prevalent classical and 
semi-classical models, and for the careful consideration of 
any proposed variation of the Lindhard and Mermin models 
of dielectric response. This discussion does not strictly prove 
the validity or unique applicability of the Lindhard and 
Mermin forms, but it does confirm that they follow appro-
priate and expected quantum behaviour. The comparison of 
Lindhard, Mermin and possible alternative forms invites fur-
ther investigation.

These new constraints are also relevant to models which may 
consider the behaviour of collective (plasmon) excitations and 
single-electron excitations separately. Recent work using den-
sity functional theory has suggested that these different kinds 
of excitation may exhibit markedly different dispersion relations 
[38], potentially due to a different level of modulation from the 
band structure of the material for intraband and interband excita-
tions [14]. If this is so, then such relations will need to be quan-
tified with respect to their momentum- and energy-dependent 
velocities, i.e. the velocity surface. These quantities will be sub-
ject to the same constraints elucidated here, and so this treatment 
will act as a critical test of the validity of these theories.

Figure 3. The group velocity of excitations in a condensed matter system as determined by (A) semi-classical theory using β = 1/3, (B) 
semi-classical theory using β = 3/5 (equation (4)), (C) the quantum theory of Lindhard (equation (7), γ = 0) and (D) the quantum theory 
of Mermin (equation (10), γ = 10 eV). The plotted values are the differences from the classical theory vc, included for reference as the flat 
blue zero planes.
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The velocity surface itself is a measurable physical quantity 
in a similar fashion to the electron ELF. Surface technologies 
such as reflection electron energy loss spectroscopy (REELS) 
can currently measure momentum-dependent loss functions 
[39], the peaks of which may be traced to derive the disper-
sive behaviour of individual excitations [38]. Other physical 
quantities evaluated from the same measurements, such as 
stopping powers and differential inverse IMFPs (DIIMFPs), 
are similarly sensitive to the velocity surface for excitations 
in the material. A detailed understanding of the behaviour of 
both single-electron and plasmon excitations will be critical to 
improvements in accurate analysis and interpretation of these 
experiments and to the interpretation of fundamental electron 
scattering properties in general condensed matter systems.
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