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The theory ofP T-odd interactions relevant to existing experimental measurements of the hyperfine structure
of TIF is reviewed. We outline a relativistic electronic structure theory based on single-particle four-component
Dirac spinors, and implemented using methods borrowed fabnmitio quantum chemistry. Numerical cal-
culations are reported of the electronic structure of TIF, some of its chemical properties, andP dfatid
electronic matrix elements. From these results, and from published experimental data, we derive bounds on the
value of the electric dipole moment of the protal, the tensor coupling consta@t;, and the Schiff moment
of the 2%TI nucleus,Q, which are now the tightest available for these quantities. General issues regarding the
calculation of the electronic structures of molecules containing heavy elements are also addressed.
[S1050-294{@8)05002-1

PACS numbds): 31.15.Ar, 31.30.Fv, 11.30.Er

[. INTRODUCTION troweak interaction formulated by Glashd®], Weinberg
[7], and Salani8]. Consequently, we now have a complete
In his contribution to the 70th birthday celebrations of and renormalizable theory which accounts Bodd inter-
Einstein, Dirac analyzed the forms of the dynamical theoriesctions. From this theory may be derived an effective inter-
which are derived from Einstein’s relativity principlel]. action which represents the interaction between electrons and
The special theory of relativity, which is sufficient to de- the weak neutral currents within nuclei. This effective inter-
scribe the dynamics of atomic and molecular systems, reaction, whose interaction strength is determined by the Fermi
quires that the laws of nature be independent of the positiononstantGg=2.2x 10~ '*a.u., may give rise to optical rota-
and velocity of the observer. Dirac noted that any change inions in atomic metal vapors, energy differences between
the position and velocity of an observer can be constructed ienantiomeric forms of chiral molecules, and nonvanishing
a relativistically invariant way from a series of infinitesimal transition probabilities between levels for which a dipole
transformations which do not involve reflections in the spaceransition is strictly forbidden in the absence of the interac-
or time coordinates. He remarked that he could see no reasdion [9,10]. Precision measurements of these tiny transition
why the laws of nature need be invariant under space or timgates in the nuclear hyperfine structure of caesium vapor,
reflections, despite the fact that all the exact physical lawgombined with elaborate many-body calculations of the elec-
known at that time certainly did conform to this principle. tronic structure of atomic caesiupi1], provide compelling
This appears to be the first published demonstration that avidence of the internal consistency of the electroweak
valid physical law need not be symmetric with respect totheory, and verification that the interaction strength is pro-
space and time inversion. Purcell and Ramsey went furthgsortional to the so-called weak charge of the nucleus. In the
[2], and suggested that the validity of fundamental theoriesnost recent of these experiments2], the detection of a
which are not symmetric with respect to spatial inversionnuclear anapole moment was reported, which results from a
(P-odd), time inversion T-odd), or spaceandtime inversion  nuclear spin-depende®-odd interaction.
(PT-odd could not be discounted without experimental evi- Despite more than 40 years of experimental effort, how-
dence. ever, there exists only one known example of-add pro-
Following the theoretical and experimental insights ofcess, the decay of the neuti&! meson[13]. Such an inter-
Lee and Yand3], this evidence was obtained by Waal.  action is not described by the standard electroweak model,
[4], who observed that nucleg@ decay is aP-odd process. and the origin of this effect is not understood, although sev-
This led to an extensive search for other phenomena whichral particle physics theories have been proposed to account
violate reflection symmetry, and to the development of theofor it [14]. Several of these theories also predict the existence
ries to account for the phenomena. Of these, the first successt PT-odd interactions. On the grounds of symmetry, a
ful description of P-odd processes was supplied by the PT-odd interaction caused by any mechanism would result
vector-axial theory of Feynman and Gell-Maf®], which  in an experimental signature which is characteristic of an
was an extension of Fermi’'s theory gfdecay, but utilized effective electric dipole momen{EDM). In the most
mathematical techniques developed for the theory of quarstraightforward interpretation of this property, a subatomic
tum electrodynamics. This formed the basis for later develparticle such as an electron or nucleon may possess a non-
opments, culminating in the standard model of the elecvanishing EDM, or a nucleus may acquire an EDM through
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PT-odd nuclear forces. Alternativel\r T-odd weak neutral PT-odd effective operators associated with the interaction of
current interactions may give rise to couplings with externala proton EDM,d,,, with the internal electric and magnetic
fields which resemble those caused by a static separation &ields of the TIF molecule, the coupling constant of a nuclear
charge. The consequences of the interaction of an elementaignsor interaction, and the Schiff moment¥fTI. Although
or nuclear EDM with an external electric field were first much of this material has already been published, these pre-
considered by Schiff15], and are reviewed in Sec. II. sentations[19,21 have been in the context of hybrid

It was Sandars who first recognized that polar molecule§chemes involving relativistic atomic structure theory and
containing heavy elements present an opportunity to detedonrelativistic guantum chemistry. Here we collect together
the existence of an elementary or nuclear EDM]. He  the essential theoretical material in order to formulate com-

realized that spin-dependent interactions are enhanced by tR&tational algorithms which are appropriate to ai initio
internal electric field of a polar molecule, since spin- relativistic molecular structure calculations. In Sec. IlI, we
rotational states close in energy but opposite in parity wouldutline those aspects of relativistic quantum theory which are
in heavy elements, necessitating a relativistic treatment gfonsistent field procedure. Algorithms are presented in Sec.
the electronic structure. Of all the possible candidates fofVY Which describe how the relevai®T-odd electronic pa-
study, TIF was chosen as the most suitable, because of ifdmeters were extracted from our many-electron wave func-
chemical stability, high polarity and polarizability, simple tion for the TIF molecule. In order to assess the accuracy of
electronic structure, the enhancement of the interaction du@ur calculations, results are given together with a discussion
to the 2°T nucleus, and the simple nuclear structure, whichin Secs. V and VI both for th&T-odd parameters and for
(19F). A series of experiments involving TIF have been per_Iength, harmonic force constant, and vibrational frequency.
formed[17—-24, the results of which have been used to place¥Ve also give details about how the fundamerfal-odd
bounds on fundamental nucle@T-odd interaction con- interaction constants are derived from @lr initio calcula-
stants. It is remarkable that these low-energy moleculabons and from the experimental data. The paper concludes
physics experiments may act as sensitive probes of possibféth an assessment of the general relevance of our investi-
high-energy particle interactions beyond the standard elecation to molecular structure calculations in Sec. VII. Some
troweak model. technical details have been presented in appendixes in order
The interpretation of these experiments requires the calt®© @void unnecessary interruption of the text.
culation of matrix elements of effectivi@ T-odd interaction
operators, and it is with this task that the current paper is |I. EFFECTIVE PT-ODD NUCLEAR INTERACTIONS
concerned. Attempts to extract the relevant electronic param- o
eters from nonrelativistic electronic structure calculations A PT-odd effect would arise in an atom or a molecule
have been made by Hinds and Sanda8j and Coveney and through an effective interaction of the form
Sandarg21], while nuclear structure calculations BfT-odd
nuclear moments have been performed by Flambaum, He=—doy-A, @
Khriplovich, and Sushko\(25]. Recently, Parpid26] has
reported calculations dPT-odd effects in TIF using Dirac- Where the nuclear spin operator is denotedoRy and\ is a
Hartree-Fock wave functions. If calculations using moderatelnit vector in the direction of the molecular axis. We restrict
sized basis sets of similar quality are compared, the resul@ur attention to the evaluation of coupling constahtsvhich
reported in Ref[26] are in reasonable agreement with thosearise due to the presence of a proton EDM, a weak neutral
obtained in this paper. However, we have been able to excurrent interaction, or an nuclear EDM induced By-odd
plore the limiting values of théT-odd parameters by em- nuclear forces.
ploying much larger basis sets, and have made a detailed Nuclear magnetic resonance experiments have been per-
study of the sensitivity of our results to basis set superposiformed on a molecular beam of TIF subjected to external
tion errors, and to the variation in the electric field in the €lectric and magnetic fieldsl7,18,20,22-24 In these ex-
neighborhood of theé?®Tl nucleus. Unlike the calculations Periments, the hyperfine structure of TIF is measured with
reported in Ref[26], we have chosen the basis set paramlhe external fields aligned both parallel and antiparallel. A
eters using a procedure which ensures accuracy of the m@onzero frequency shiiév in the hyperfine structure result-
lecular spinors in the critical region in the neighborhood ofing from the reversal of one of the external fields is the
the 2%°T| nucleus. In this work, we calculate the relevant €xperimental signature of BT-odd interaction. The energy
electronic structure parameters using relativistic quantunghift is related to the coupling constant in the effective inter-
mechanics, and computational techniques borrowed ibm action Hamiltonian by 20,24
initio quantum chemistry. In order to perform these calcula-
tions to the required level of accuracy, this research has ne- hév=4d[(ay-N)|. 2
cessitated the development of new computational techniques,
and represents a considerable advance in the state of the &tnonvanishing coupling constamt may arise through a
of molecular electronic structure calculations. number ofPT-odd processes, which we denote by the vol-
We have already made a brief communication regardingime effect V), magnetic effectd™), weak-neutral current
ab initio calculations of thé® T-odd electronic parameters in effect, @), and the Schiff moment effecd). In the fol-
TIF [27], though no detail was given about how the calcula-lowing sections, effective operators are derived which estab-
tions were performed. In this paper, we review in Sec. Il thelish the relations between these experimental parameters and



922 QUINEY, LAERDAHL, FAGRI, AND SAUE 57

The classical electrostatic equilibrium of the molecule is es-
tablished by the condition that the forces on the nuclei van-
ish.

y For a system of particles in electrostatic equilibrium, each
member of which possesses a point charge and an EDM,
there is no first-order interaction energy between a particular

@ EDM and the electrostatic field generated by the other point
charges. This restriction is often referred to as Schiff's theo-
rem|[15], and also holds for particles with a finite size if the
charge and dipole distributions are identical. The details of
the charge distribution within the atomic nuclei, however,

FIG. 1. Coordinate systems and notation for the thallium fluo-2r€ _r_10t_ included in the determination of the _electrosta_ttic
ride molecule. The position of electraris specified by, , and that equilibrium state, because the nuclear structure is determined
of nucleonn, either a proton or a neutron, by. Each of these is Y Coulomb forces between protons and non-Coulomb short-
defined with respect to a spherical polar coordinate system whos&@nge interactions between nucleons. Due to the action of
origin is located at the center of mass of tRTI nucleus. The these non-Coulomb forces, different charge and dipole dis-

internuclear axis and the orientation of the spherical polar coordifributions may occur, and a nucleon EDM may experience a

nate system which specifies the internal coordinates of the molecul@onvanishing first-order interaction energy with the electric

is defined by the vectok, which for the sake of convenience we field generated by the electron density. This is called the
have aligned parallel to the component of an external Cartesian volume effect, and will be discussed in Sec. Il A. In a mo-
coordinate system. The vectaris directed toward the center of lecular system the electrostatic equilibrium may also be per-
mass of the fluorine nucleus, labelEdn the diagram. turbed by magnetic forces, and this magnetic effect will be
reviewed in Sec. Il B. In Sec. Il C we examifeT-odd ef-

the proton electric dipole momed},, a weak neutral current  fects which arise through an interaction between the electron

coupling constan€+, and the nuclear Schiff momeft. density and the weak neutral current, and in Sec. Il D we

For the sake of clarity, we formulate our effective opera-present the theory of the Schiff moment interaction, which is
tors using labels adapted specifically for the TIF moleculethe result ofP T-odd nuclear forces. Since the magnitudes of

Any polar moleculeM X, fulfilling the same nuclear structure all of these interactions depend on the electron density in the

restrictions satisfied by TIF, may be treated by similar methneighborhood of the nuclear volume, a large enhancement of

ods, using the notational replacements=IM and F—X. the effects is expected for molecules containing a heavy el-

The wave function of the TIF system is denotedbyand is  ement such a thallium.

assumed to have the approximate form

W=V (r) W () W oo Wl D). @ A Volme eflect

The volume effect is a first-order interaction between the
This comprises a nuclear wave functidhy(r,,) for 205T| a EDM of the thallium nucleus and the electric field of the
nuclear wave functionV(r;) for *°F, an electronic wave €lectrons under the assumption that the charge and dipole
function ¥.(r.), and a spin-rotational wave function distributions in the nucleus differ. tf,, are the charges of the
Wr(ry,1). The coordinate system is defined in Fig. 1, whereconstituent nucleons if%Tl, g; are the charges of the other
r; is the position of electron in the coordinate system cen- particles in the systertelectrons, and théF nucleus, and
tered at the thallium nucleus, ang is the position of E;, is the electric field at nucleon due to charged particle
nucleonn, either a proton or neutron, within the nucleus. Thei, then the average electrostatic force on the Tl nucleus is
internuclear axis\ is aligned parallel to the externalaxis.
In our model of the TIF molecule, the nuclei are treated as (FY=(¥|> qnE; n|¥). (5)
classical charge distributions which generate external elec- in
trostatic fields in which the electrons move. The 90 electrons
are point charges, whose coordinates we designate.by The first-order matrix element involving the interaction of
=(rq,rs, ... fog). The electronic wave functiol4(r;) is  this internal electric field with elementary nucleon dipoles is
an antisymmetrized product of single-particle spin@kter
determinant ¢, of the form

<HEDM>:<\I’|% —dy-Ej | V). (6)
Wo(ry,fy, - .. fo) '
da(ry)  o(ry) - og(ry) Applying Gauss’s theorem to the nuclear charge distribution,
which we assume to be spherically symmetric, the electric
1\12 ¥ar2) alra) o Paolr2) field E; , may be written in the form
=\ 901 : : : : (4)
P1(ro0)  Pa(rgo) -+ thoo(Teo)

Ein=— —qi[1-0(r;.ry)], @
I

The electronic probability distribution is used to construct an
adiabatic potential-energy surface on which the nuclei movewhere the Heaviside step functié(r;,r,) is defined by
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1 |f I’i<rn Coyi
O =g jtr>r. . =Z(WRINWR)(Wo 2 7 [1-e2(r)][We),
We actually require the force on a nucleondue to a 17

charged particlé. Consequently, the effective operator for

the electrostatic force on a spherical ball of nucleon charge cos,
Q. and of radius,, due to a particlé with chargeq; , is (Hepw) = _D(‘I’R‘I’e|(0r\|')~)zi z
i
ri i rigndi _ _
- L EE IR RN X[1=eo(rNate

: : B 5 cos,
For the whole nucleus, we find that the force is =~ D{(Wrlon MWWl =2

i X[1=ep(rp][We). 18
<FN>:_<\P|% qnqi:—3[1—®(ri,rn)]|\p>, (9) [1-0p(r)]|Ve) (18

At the equilibrium internuclear separation, the electrostatic

and the interaction energy of the nucleon dipoles with thforce on the nucleus vanishes. Settiffgy)=0, it follows
field is from Eq. (17) that

Oy -ri i
(Heow=(¥Z 65 [1-0(r rl[0). (10 DOVdlon AWV S 1= ea(ry) ¥ =0

i i (19

These are just the Eq$5) and (6) of Ref. [19] with the

conventional replacement of spherical tensors by their Carsincez is just a number, and the left-hand side of Etp) is

tesian equivalents. Following the notation of REf9], we  just the projection of a vector proportional xoin the direc-

adopt the definitions tion of oy, taken in the limit that the magnitude of the
vector vanishes. Adding Egé&l9) and(18), we obtain

(VN2 aa¥h)=2, (1)
n CoY;
(Heom) = — D<‘I’R|(0'N‘}\)|‘I’R><‘I’e|2i 2
i
(U2 an®(ri 1) W)y =Zex(ry), (12
T | x[e(ri) = eo(r)]|¥e) (20
_ at the equilibrium geometry. This is the expectation value of
<WN|§;‘ th|¥n) =Dy, (13 an effective operator which may be written in the form of Eq.

(1), in which the electronic part of the matrix element in Eq.
(20) forms part of the coupling constadY. Substituting the
<\I,N|; da© (1) [ ¥y} =Dowep(r), (14 definitions ofo,(r;) andep(r;) into Eq.(20), one obtains

where oy is a unit vector parallel to the nuclear spin,The _ On %
total nuclear charge i&, ¢; is the nucleon density is the (Heow) =~ D{Wgr¥n[A ; zN" D VR¥N)
total nuclear dipole moment, argl, is the nucleon dipole

. . . 2 T
density. Integrating over the nuclear space, we obtain XE f d@ij sing. do,
T Jo 0
r.
(Fo)==Z(Vr¥dl X g 5[1-0z(r)][Wa¥e), (15 o cos
oo Xfo rZdri ¢f(r) 2 gi(ri) | (21)
i
oyl
(HEDM>:D<‘I’R‘I’e|Z di—5 [1-op(r)]|Vr¥e). For smallr,, the nonvanishing component of the electronic
Fi (16) part of Eq.(22) in the direction\, may be written
2
If we now ignore contributions from the protons in the F 2wy i + 2
nucleus because of the localization of all the nucleons that rI'TO 3 2 oz Vi (ri) (i) =X, (22

comprise it, adopk as the internuclear unit vector, and sub- fi=n

stitute g; = — 1a.u. for the electrons, we obtain . , o . .
G in which the quantityX is determined by the gradient of the

coh: electronic density at the center of mass of the nucleuszand
> '[1—Qz(ri)]|\IfR\Ife) is the component of; parallel toX. The equivalence of the
ri electronic parts of Eq921) and(22) may readily be estab-

(FN)=Z(Vr¥ A
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lished by expanding each single-particle statg(r;), in a into a scalar parA® and a vector potentiah, so thatA
complete basis set centered at #&Tl nucleus. =(A°,A). Operators labeled with the subscrytrefer to the
Since the?*TI nucleus has a single unpaired frotonin  nuclear coordinates. If we ignore the possibility of time-
the shell model, we s&@=d,,, and the total nuclear EDM to dependent vector potentials, then this is just the classical
d,oy . Integrating Eq(21) over the nuclear coordinates, we expression for the interaction between a dipole and an elec-

obtain tromagnetic potential, and is the starting point for the deri-
vation of Hy, . The Dirac Hamiltonian for the nucleus in the
(Heow) = —dpXR(W gl oA W), (23 presence of this electromagnetic field may be written as
where H=cay-(p—ZeA)+ ByM\c?>—Zech

_deN(UN'E+iaN'B). (27)

wherecA? is the scalar potential at the nucleus due to the
electron distributionE is the associated electric field, aBd
is the magnetic field due to the electron current.

In order to derive an effective operator proportional to
oy -\, the Foldy-Wouthuysen transformation is employed. If
we classify the constituent parts &f into odd and even

operatorsO andE, we find that

R=(Un(r)| 2 (%—6n,3s)rﬁ|wrn>>. (24)

The factord, s is included in the nuclear structure facter

to indicate that only the distribution function of the unpaired
3s proton is to be included in the evaluation of the nuclear
EDM. Comparing Eqs(23) and (1), we define the effective
strength of the volume effectl’, by

dV=d,XR. (25) R _
O=Ca/N-(p—ZeA)—Idp,8NaN-B, (28)
This formulation expresses the experimental coupling con- .

stantd” in terms ofd,,, which is the fundamental parameter E=-ZecA-d,Byoy-E. (29
of physical interest, an electronic structure fackgrwhose
value we will determine byb initio Dirac-Hartree-Fock cal-
culations, and a nuclear structure fac®r The principles Well known [30]. If we recall that the components afy
involved in the calculation oK are derived from quantum @anticommute with3y , retain only the lowest-order contribu-
electrodynamics, and the accuracy with which we may delions in 1My and d,, and eliminate all terms involving
termine its value is limited solely by considerations of com-Products ofA andB, we can writeH as

putational complexity.

The Foldy-Wouthuysen transformation of this operator is

A2
H=B\| Myc?+ ° +E (30)
B. Magnetic effect M C2
Section Il A discussed the possibility of observing the p2 Zeh
EDM of a charged particle subjected to the strong forces :,BN( Myc2+ ———oy\-B
within a nucleus, which invalidates the assumption of elec- 2My  2Myc
trostatic equilibrium inherent in Schiff's theoref@5)]. Per- id, Bu[(ay-P)(ay-B)—(ay-B)(ay-p)]
turbation of the electrostatic equilibrium by magnetic inter- + P M c
N

actions also raises the possibility of additionRIT-odd
effects. Here we investigate the interactions between the —ZecA—d,Byo\-E. (31)
magnetic field of the electrons in TIF with a point nucleus

with massMy, spin /2, magnetic momenuyoy, and  The operator defined by E¢31) contains the usual parity-
EDM d,oy. SeparatePT-odd operators may be derived conserving terms, such as the rest mass energy, nonrelativis-
from the interaction between the magnetic field and thdic kinetic and potential energies, and the coupling of a
nuclear current density and between the magnetic field anduclear spin magnetic moment of magnitudesg)/(2M \c)

the nuclear magnetic moment. We denote the3eodd in-  with the magnetic field generated by the electronic current.
teractions byHy, andHZ, , respectively, and demonstrate that As discussed below, this last term will give riseHg, , but
similarities in the form of these operators allow them to besince the?*>TI nucleus has an internal structure which causes
amalgamated into a single effective magnetic interactionthe magnitude of its experimental magnetic momggtto

which we denote b, . differ from the prediction of the point-particle Dirac theory,
The interaction of an EDM with the electromagnetic field we must treaf T-odd effects arising from this source sepa-
of the electrons is given bj28,29 rately. In addition, we obtain & T-odd interaction Hamil-

tonianHgpy, of the form
de( YaYsYu %) N( (9/.LAV_ avA,u)

i
JA = N . . — .
:—deN O-N,E_O.N,dt _{_iaN.B , (26) HEDM dp 2MNC[(aN p)v(aN B)] BO-N E ' (32)

_ ) _ ) ~where the commutator is given by
in which the usual summation convention for repeated indi-

ces has been adopted. The components of the electromag- [(ayn-p),(ayn-B)]=(ay-p)(ay-B)—(ay-B)(ayn-p).
netic four-potentialA,, are derived from the partition oA (33
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The transformation Eq(31) has effectively decoupled the unpaired proton in the shell model of tB€°TI nucleus, and
large- and small-component contributions, because any prodke closed-shell electronic structure of TIF eliminates all
uct of four-component operators of the form contributions from nonvanishing electron EDM’s. To first
(an-p)(ay-B) is block diagonal, with each22 block in-  order ind,, the effectiveP T-odd interaction may be written
volving operators of the Pauli two-component form in the form

(on-p)(oy-B). Considering only the interaction of the exter-

nal electric field of the electrons, with the EDM of a point- H2 =_—ifOH —H

like proton under the assumption of point charges at equilib-

rium, the term—d,Boy-E has a vanishing expectation value idpon

because of Schiff's theorem. We can therefore write an = ZZmpC{("'N'p)("'N'B)_(‘TN'B)(UN'p)}- (40)

equivalent effective operator in terms of the four-component

operators of the form - _ . 1 .
Noticing that this is proportional tély,, we combine Egs.

(34) and (40), and generalize the result for ad-electron

[
Hu=d, m[(UN'p)a(UN'B)] : (39 system to form the complet@T-odd magnetic interaction
We now turn our attention t¢%,, which is an effective _ an
PT-odd Hamiltonian arising from the magnetic moment of Hy=idp er 2Zmyc §]: [(on-P),(on-B)]j.

the nucleus. The interaction between an intrinsic nuclear (41)
magnetic momengy=gnun and the magnetic field of the

moving electrons has the form . .
The expectation value of this operator must be calculated

H,=—0gnmnon-B, (35) using eigenstates which are not perturbed by the nuclear
magnetic moment interaction, E5), a requirement which
where the nuclear magnetopn,, is defined by is satisfied by our Dirac-Hartree-Fock wave functions. As-
suming that the center of mass of the molecule in which this
ef nucleus is to be found is at rest, one may make the replace-
Mn= 2m,c’ (36 ments

and where the mass of the protam,,, is approximately
1836m,. This term is analogous to the third term in Eg1), pP=—2p, (42)
in which the nuclear magneton is replaced by the experimen- !
tal value of the nuclear magnetic moment33fTI.

Following Schiff [15], we define the infinitesimal dis-
placement operato®, for a spinj particle whose electric B:Z. Bj, (43
dipole moment il o, by

dp
Q: EGNp (37) B. =

rxXa
—) . (44)

Schiff pointed out that a dipole moment may be regarded as
arising from the infinitesimal displacement of a point charge Employing the identity
and we show in Appendix A that the Hamiltoni&h of the

system can be written (o-X)(o-Y)=X-Y+io: (XXY), (45)

H=exp(iQ)Heexp(—iQ)—i[Q,H ] (39 _ _ _
and dropping terms independent of since they are not
to first order ind,,, whereHy is that part of the Hamiltonian observable in the spin-resonance experiment which is the
which is independent of electric dipole moments. This allowssubject of this theoretical investigation, we find that
a determination of the eigenfunctions of the first ternHin

¥}, in terms of the eigenfunctions ¢, wg, through the 1 I (X a
relation =d.|— . -
Hu dp(ZMNc+ZZmpc); N [px( (3 )
Yn=exp(iQ)¢y. (39
rXa
Since there is no dependence @in the eigenfunctions of N r3 Xp] ' (46)
i

Ho, there is can be no correction, to first ordedip, arising
from the first part of the Hamiltonian. Here we are concerned
with the interaction of a single-proton EDM oy, which is By using a result presented in Appendix B, Hinds and San-
present in the second part bf, and implicitly assume that dars showed19] that the total magnetic interaction energy
interactions involving the EDM's of all other particles make Ey, , resulting from the combined effect bify, andHZ, , may

no net contribution. This is possible because there is a singlee written in the form
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EM:<H%/|+H§/I> There is a nonvanishing first-order tensor interaction, how-
ever, becausé=1 for ?°°T| and '°F. If we assume that all
pe ( n In ) second-order effects are smaller than those caused by first-
- TTPl2M e 2ZmyC order interactions, these selection rules enable experimental
discrimination between the scalar and tensor electron-proton
axX| coupling constants. Since the tensor interaction is spin de-
X(¥gl "N'M‘I'R)E <'/’j|<r_3> [in s (4D) pendent in the shell model, the tensor coupling constant
J j derived from the TIF experiment contains only contributions
from the unpaired proton. Evaluating the matrix element of

Hy in the TIF state function¥, leads to an operator of the
form Eq. (1) with a tensor coupling constadt’ defined by

aX|
)2 <wjl(r—>§>'le>x, [21]
L

yielding an effective magnetic coupling constaiit of

1 On
M_ _ -
d ZdP(ZMNc+ 2Zmyc

dT= \/fiCT; (filep(r)(vom)jal ), (52

when we compare with the effective interaction in Ed.

where o ,(r;) is the density of the unpaired proton in the
2%T| nucleus at the electronic coordinate. Flambaum,

Following Hinds, Loving, and Sandaf48] we write the  Khriplovich, and Sushkoy25] showed that bounds 0@g
most general nonderivative short-range parity-violating interalso may be obtained from the TIF experiments, and this
action between a nucleon and an electron on the form effect is considered briefly in Sec. VID.

C. Weak-neutral current effect

Fen= 2 Fi= 2 iC () (Wl vstve),  (49) D Schiff moment effect
K k Even if the nucleons do not possess an EDM, the nucleus
ofnay have a characteristic EDM due to a nonspherical charge
OIdistribution caused by T-odd nucleon-nucleon interactions
as shown by Coveney and Sandg24]. The nuclear EDM
dy is written as a classical collection of point charges

whereC, is a coupling constant depending on the nature
the interactiong,, here represents an electron-positron fiel

operator, andy,= z,/xlyo. The indexk labels all vector V),
axial (A), scalar §), pseudoscalarR), and tensor ) com-
binationsI", of the Dirac matriceqy,}. The combinations
ke{V,A} are theP-odd interactions of the standard model dN:; Onfn s (53
of electroweak theory14], and give rise to optical rotations

in atomic metal vapors and transitions between states of ORypere the summation is over nucleons whose chargg, is
posite nominal parity. These phenomena are now well estaby,4 \whose position is,. The interaction energy of this

lished by experiments whose precision has been refined By, arge distribution with the electric field due to the electrons,

25 years of continuous effort. _ , and the electric field aty due to the electronic charge dis-
The combinationk € {S,P, T} yield PT-odd interactions b ition E(r,), are given by

which may induce effects characteristic of an EDM in atoms
and molecules. If the odd-parity part of the interaction is

restricted to electronic coordinates and the nuclear coordi- W= qaVe(ry), (54)
nates are treated nonrelativistically, the pseudoscalar interac- "
tion Hp is eliminated. Or.w sy.mmetry- gﬂrounds,ﬂthe remaining E(r,)=—VVa(r,), (55)
scalar and tensor effective interactiodg andH+, respec-
tively, assume the forms whereVg(r,) is the electrostatic potential af. Following
Coveney and Sandafg1], V(r,) is expanded as a Taylor
~__Us series about the center of mass of the nuclgusyielding
Hs= J-E, (50 . ; ;
J the expansion for the interaction energy
R d
H=-— |—T| -E, (51 W=2ZV(r,)+ ; Qn(rn‘ve)ve(rn)lrn:rN

whereJ is the total electronic angular momentui, is the
projection ofJ along the internuclear axi$, is the nuclear
spin, E is the external electric field, and the dipole coupling
constantsdlg andd; are proportional taC5 andC+, respec- 1 v \3

tively. An gxperiment to determin€g resquires an atom or " 6; (Vo) Vet gy ¥ (56)
molecule withJ+#0, while an experiment to determin@;

requires a nonzero nuclear spi# 0. For a closed-shell mol- At equilibrium, the force on the nucleugy=—(V W),
ecule such as TIAVI;=0, so thatJ-E)=0, and there is no vanishes. Setting-(V\yW)=(V ,W)=0, it may be shown
first-order contribution involvingnly the scalar interaction. that

320 (1 Vo Velro)lr,=r,
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1 ) ) The solution of equations of this type forms the compu-
VeVe(rn)=— EE Anfa Vel VeVe(ra)llr =r,- (57 tational basis of the relativistic electronic structure theory of
n atoms and molecules. These solutions are classified as being

This condition, which is valid if the system is in electrostatic ©f “Positive-energy” type for E,>0, and “negative-
equilibrium, is substituted into Eq56), yielding the effec-  €nergy” type forE,<0. For attractive potential¢(r) <0 of
tive perturbation the type which most commonly occurs in electronic structure

theory, the positive-energy solutions are further classified as
. 1/3 , 1 5 5 square-integrable bound states #mcJZ<E,<mdc2. All
Hn=% g; Gnfnln = 22 Anln ol | Vel VeVe(rn)]. other solutions belong to a continuum of states representing
nn cg  Scattering in the external field. The problem of interpreting
(58 and handling negative-energy solutions has been described
previously[32], and will not be pursued further here.
The Dirac equation is a single-particle equation, and the
generalization of this equation to the many-particle case is

Taking the expectation value d;fN in the state function?
leads to the effective operator

A2 = —d% A (59 not as straightforward as is the case in nonrelativistic theory.
eff N As a first step, the electronic Hamiltonian fiNg,.. particles
where[21] may be written as a sum of Dirac operators for the individual
particles
d°=-6QX (60) X
13 ho(ri)=c(a-p);+BmMc+V(r)). (64)
_ 2 . :
Q=35 g(‘l’N|§n: annquN)—l/Z(\IfNQn: Gnf 5[ W) If the particles are assumed to interact through the Coulomb
interaction, we obtain the Dirac-Coulomb operator
XN X daln /12PN | (61) . e |
" A Hoc=2, fn(r)+5> ——r. (65
i=1 2i% |I’| rJ|

The electronic integraK is defined by the volume effect . . . ) )
parameter Eq(22), andQ is the nuclear Schiff moment in- The interpretation of this operator requires special care be-
troduced in Refs[,25] and[31]. cause of the presence of the negative-energy states. A

second-quantized theory may be developg®] which im-
poses the condition that these negative-energy states are not
accessible under the circumstances prevailing in a molecular
The derivation of the coupled linear equations usedlin environment, leading to a computational scheme which
initio relativistic finite basis set calculations has over theclosely resembles the practices encountered in nonrelativistic
years been presented by a number of authors, for examplgpantum chemistry. The total electronic energy within this
Refs.[32,33, based on the early work of Ref84,35. Here  theory is
we review that development only to the extent that is neces-
sary for the introduction of expressions and quantities which T A -
are essential for the discussions and derivations pertaining E:izl (I|hD|I)+§i,j2:1 [(ilglii)—(ijlgliD)]. (66)
directly to the PT-odd effects studied by us. As most of
these interactions involve the nuclear region, we discuss iiere Mulliken notation is used for the electron repulsion
particular the use of nuclear models of finite size as well asntegrals, where
the solution of the Dirac-Hartree-Fock equations close to the
nuclei.

lll. RELATIVISTIC ELECTRONIC STRUCTURE THEORY

NOCC NOCC

- 1
ilalkn = | [ lcowteon = uk e,
A. Dirac-Hartree-Fock equations (67)

_ Foran external electromagnetic field consisting only of aynq f(r) is the Hermitian transpose of the four spinor,
time-independent scalar potentM(r) = —ed¢(r), the time- 4 (r). For later convenience, we define
independent Dirac equation takes the fdi32]

ufk(r)}

{ca-p+ BmE+V(N)} (1) = Exgla(1). (62) wN=| s
Pil(r)

Here yy(r) are four-component functions of position, four-
spinors, with eigenvalueg,. The 4x4 matricesa and 8 whereyi(r) andg(r) are two-spinor functions comprising,

(68)

are given by respectively, what is commonly denoted the “large compo-
nents” and “small components™ off,(r). Here we neglect

_ 0 oy _ | 0 contributions from the Breit interaction, which is the lowest-

%= g, O  B= 0 I 63 order relativistic correction to the Coulomb interaction be-

tween electrons. It is assumed that this approximation may
whereq={x,y,z}, o, are the Pauli spin matrices, ahds  be invoked without introducing significant errors in our final
the 2xX 2 unit matrix. calculations, because the properties in which we are inter-
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ested depend mainly on valence electron amplitudes and thgﬁm”aﬂy’ block matricesG™T, which compriseG, the ma-
these will not be very sensitive to the magnetic and retardagix representation of the mean-field potential, may be evalu-
tion effects described by the Breit interaction. We knOWated_ For exp“cit expressions see RQB] The components
from our calculations on aton'[§6] that the self-consistent of the four-spinors may be expanded in a scalar basis sets
treatment of the Breit interaction contributes only a slowly[33]1 or directly in a two-spinor basis s¢89]; these ap-
varying effective potential, and we shall see in later sectiongroaches are equivalent, provided that thstricted kinetic
that such a pOtential is Unlikely to have a substantial effera|ance prescriptio(e_g” Ref[4o]) is adopted.
on the numerical values of tHeT-odd parameters whichwe |y these calculations, theestricted kinetic balance pre-
calculate. In calculations oPT-odd effects in atoms, the Scription[40] is enforced, in which the Sma"_component ba-
authors of Ref[29] showed that the Breit interaction con- sjs set is generated by the action of the operatopj on the
tributes only a few percent to electron EDM parameters inarge-component basis. This prescription removes the varia-
Tl, and we assess the Sensitivity of our molecular Ca'CU'ationaj Co||apse pr0b|ems that p|agued ear|y four-component
tions to be of a similar magnitude. Recently, the calculationca|culations and guarantees that finite-dimensional represen-
of magnetic and retardation effects has been described angions of Dirac spinors tend toward exact representations in
implemented in molecular electronic structure calculationghe |imit of a complete set. For finite dimensions there is no
[37]. The evaluation of matrix elements of the Breit interac-ampiguity in the identity of individual members of the Dirac
tion are intrinsically more expensive than those of the Couspectrum, and consequently there is a strict separation of the
lomb interaction, and there is almost no experience of |argespectrum into its positive_ and negati\/e_energy branches.
scale basis set calculations of the Breit interactions forstanton and Havriliak41] demonstrate that solutions of the
molecules. However, the teChnOlOgy for such CalCUlationﬂjiraC equation obtained in this way do not provi@)rous
now exists, and a detailed study of the effect of the Breitypper bounds to exact eigenvalues for a given potential, but
interaction in molecular structure calculations is planned as g is our experience that the behavior is quasivariational if a
development for the future. finite nuclear model is adopted and uncontracted sets of
If the energy of an electron at rest is defined todfe  Gaussian basis functions are used. The observed conver-
atomic units, the matrix representatibinof the Dirac opera- gence behavior closely resembles that observed in nonrela-
tor hp for an electron moving in the external field b, tivistic quantum chemistry as the dimension of the basis set
nuclei is is increased.
From these matrix expressions, the Dirac-Hartree-Fock
HE HS approximation is obtained by replacing nonrelativistic Sehro
H= HSL HSS|' (69) dinger operators by one-electron Dirac operators and con-
structing mean-fields from occupied positive-energy ampli-
tudes. The Fock matrik is then defined as

Introducing the label§u, v} to denote the functions within
the large- and small-component basis sets, the matrix ele- F=H+G (78)
ments of the blocks ofl are defined by '
LL_ oLl .\ 2oLl In this matrix representation, the Dirac-Hartree-Fock ap-
Ho =V, +cS., (70) proximation involves the solution of the generalized matrix
eigenvalue equation

HES=VSS-c2SSs, 7
FC=eSC (79
H-S=cII\3, 72 _ _ _ _ _

mr wr (72 for the diagonal matrixe, which contains the eigenvalues,

HSL_ oSt 73 and forC, the matrix of spinor expansion coefficients. Since

pr= Gl (73 F depends oD, whose elements are constructed from the

h expansion coefficients of positive-energy four-spinors con-
where tained inC, the Dirac-Hartree-Fock procedure involves the
Nnue self-consistent solution of these coupled equations for the
TT_| T T orbital energies and for the expansion coefficients of the

Vis (wﬂ 2 Va(D) wv), T4 coinors.
TT_ Ty, T .
SMV—(%U,LWV), (75 B. Finite nuclear effects

_ _ The nuclear point charge model, which is widely em-
HTT=(¢;|0- p| z,//I). (76) ployed in nonrelativistic quantum chemistry, is not appropri-
- ate in systems involving heavy elements. Fortunately, the
The elements of the blockd'™, VTT, andII'" are zero val-  €lectronic properties of such systems are not strongly depen-
ued T=L or T=S, andT=T. The density matriD is con- dent_qn the details of the model which |s'ad(_)pte_d to represent
. the finite extent of the nuclear charge distribution. The sim-
structed in the block form : ) oo
plest of these models is the uniform nuclear charge distribu-
tion, which represents the nucleus as a solid homogeneous

DL pLS ) Noce ) ” Lo
D= whereD™" =S ¢ (7 sphere of charge. A more detailed model, the Fermi distribu-
DSt DSS e .21 wi G- (77 tion, includes parameters derived from experiment, and is
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widely used in relativistic atomic structure calculations. The =Vo+Vir+Vor2+. .. (84)

most important nuclear parameter in electronic structure cal-

culations is, however, the mean-square radius of the chargehere

distribution, for which an empirical formula is available

which depends only on the nuclear mass. In order to facili-

tate the evaluation of multicenter nuclear attraction integrals

over our chosen electronic basis set, we adopt a Gaussian

nuclear charge distribution whose mean-square radiuand the higher-order coefficients may be obtained simply by

matches the empirical data. expandingo(s) and expanding term by term. We find that
A normalized spherically-symmetric Gaussian charge disthe explicit forms of these coefficients are

tribution centered aP may be written in the form

Voz—ZJ:sg(s)ds, (85

A
o(rp)=0(rp,0p,¢p) Vo:_zz\[;, (86)
A 2\y%0 0
=4\ \Gexﬁ_)\rp)Yo (0p,®p)Yo(0p,@p) V,=0, (87)
(80) B ’7TV8
32 V2_‘E- (88
2(;) exp(—Ar3), (81)

The effect in which we are interested is strongly localized
over the volume of the%Tl nucleus, so we may safely ne-

where (r?’.ep."pp) IS a spherlcal_polar coordmate_ system glect all contributions to the potential from the electronic
whose origin is aP, and\ is a positive constant which may : . o

A S screening, since these add a positive constantgtavhose
be chosen so that the distribution reflects empirical root:

. - agnitude is much smaller than that of the bare nuclear
mean-square values of particular nuclear radii. The paramet- .
. . L . value. In our calculations, we have used the value
ric form for A which was used in this study is

=1.388 892 520 X 10° for 2°°TI, which corresponds to a
2 root-mean-square radius of 1.03920 * a.u., and vyields
0.529 177 249 82 Vo=—L0771X1f au.

0.83A%+0.57

A=1.50% 1010(

) ) C. Solution of the Dirac equation for small r
where A is the nuclear mass number. The functional form

given here, which includes the overlap distribution of nor- !N order to analyze the numerical behavior of t#&-odd
malized spherical harmonic functions, emphasizes the pragtéraction parameters, we need to know the form of the
matic choice of a Gaussian distribution as a model for thd@dial and angular parts of the solutions of the single-particle
nucleus. Nuclear attraction integrals are, in this formulationDirac equation in the region of a heavy Gaussian nucleus.
simply special cases of the more numerous eIectronL-rhe electrostatlc_ potential may pe wntten'm the form Eq.
repulsion integrals which form the bulk of the computational (84 and the radial form of the Dirac equation for the large
effort in Dirac-Hartree-Fock calculations. In practice, the@nd small componen®(r) andQ(r) is

choice of a primitive Gaussian nuclear distribution is a good

one, and may be refined by the inclusion of more functions, c2+V(r)—E c( _ i + K
or of higher multipoles, if required. dr r P(r)
From elementary electrostatics we may obtain the central =0. (89
field potential,V(rp), due too(rp) for a nuclear charg& d « 2 = |LQ(r)
! cl—+— c+V(r)—E
from the relation dr r

2m ™ %0 o These radial solutions may be formed into atomic four-
Virp)=-2 o do 0 sin(0)dd Yo (0p,¢p) Yo(Op . @p) spinors;(r), according to

1 (e » 1 Pi(H)X.m(6,¢)
X{—| &? sds+f se(s)ds -rz—{. ' , 90
{rpfo o(s) . o(s) ] hi(n=1 Qi X 0,0 (90
1 (re * in which x, m(6,¢) and x_, n(0,¢) are spin-angular two-
— - 2 K,m K,m
B Z[ rpfo se(s)ds+ frPSQ(S)dS}' (83 spinors deduced from the more general functigps.( 0, ¢),

where
After a little rearrangement, and dropping the subscript on
for convenience, we write the radial potential due to a Gauss-
ian nucleus in the form

jri-m\¥2
21—+2) Y7 (6,0)
ij,—l(ea‘P): ) 1 12 ) (91)
j+1+m

2i+2 YIz(6.9)

V(r)=—Z[ fwsg(s)der %frszg(s)ds— frsg(s)ds]

0 0 0




930

j+ m 1/2 -

T) Y56, ¢)

Xim,l(e!(P): j_m 112 ’
( T) Y™iA(0,0)

(92

anda= —sgn(k). The functionsY%(6,¢) are spherical har-
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IV. NUMERICAL EVALUATION OF
ELECTRONIC PARAMETERS

PT-ODD

A. Volume effect

The purpose of this section is to illustrate the origin of the
most serious of our numerical problems in calculating
PT-odd interaction parameters. By examining the analytic
behavior of the molecular spinors in the neighborhood of the

monic functions defined consistent with the conventions of?°°T| nucleus, we will find that one term in particular in-
Condon and Shortlej42]. These two-spinors are eigenfunc- volves a numerical cancellation of contributions which may

tions of j2 with eigenvaluej (j + 1)%2, the projection of in
the z direction with eigenvaluens, and of the operatoK,
where

K" 0
K= 0 —k'l’ (93
K'=—(2s-1+1), sandl are the usual spin and orbital an-

gular momentum operators, andy;(r)= «;¢;(r). The al-

lowed values ofk arexke{*+1,=2, ...} and are associated

with total angular momenturjy given byj=(2|x|—1)/2. In
particular,x=—1 corresponds to g, state,x=1 to ap,,,

state, andk= —2 to aps, state. Than values are restricted

to the half-integer values j=m=<j.

Spherical spinors of this form satisfy the identity
F(r) ifdF(r) «F(r)
U'p[TXK,m(QKP _F[ dr r X—K,m(a’()o)'

be reproduced accurately only if the atomic components of
each spinor satisfy the analytic results for ih/qq ratios
derived in Sec. Ill C.

The electronic structure factot in Egs. (25) and (60) is
evaluated as the sum of single-particle contributi®fnsac-
cording to the definitions

NOCC
X=2, X, (97)

27 N
Xi=— [V(#(0)¢;(0))]; (99)

In practice, theX; coefficients are calculatedirectly from

the relation
1 27 T
0 0

Xj= lim -
rn—0ln

(94)
: (99)

n cosY;
Expanding the functionB(r) andQ(r) as power series in X jo rjzdrjlﬂf(fj)r—zjlﬂj(fj)
and classifying the solutions by<<0 and x>0, we obtain i

solutions whose characteristic features are summarized b?ﬁ the limitr .0, this involves only the numerical values of
n—Y,

low. the four-spinor amplitudes at=0, which are readily de-
Case I'k<0 duced from the basis set expansion coefficients of the four-
' spinors, and angular factors which are determined analyti-
P(r)=r"""po+p,r?] cally. The angular selection rules eliminate all contributions
Q(r)=r"*[qo+q,r?] except from spinors of symmetry type=3. Contributions
(95  to X; from F-centered basis functions are negligible because
(21+3)c the gradient of the electron density at the Tl nucleus is domi-
pO/qO:V +C2—E nated by distortions in the Tl-centered atomic functions
0 caused by molecular bond formation. All matrix elements
P1=0q,=0. involving F-centered basis function contributions are ex-
cluded in our calculations oX.
Case ll:k>0 In order to analyze the numerical problems involved in
P(r)=r'""po+ p,r?] the evaluation oK using our numerical techniques, it proves
| ) to be convenient to write each spinor afbamal one-center
Q(r)=r[ago+0ar-] (95)  ©xpansion of the form
(Vo—C2—E)
Po/do=— 2+ 1c gi(n)=|—1m);+[+1m);+|-2m);+---, (100
pP1=0,=0. in which all explicit detail about the functional form of the

expansion functions other than their symmetry properties is
Note that in either casg is a constant which is determined suppressed. The functiohs,m); are atomic four-component
by the spinor normalization condition, and that the ratiospinors which satisfy the mean-field Dirac equation in the
Po/qg is, to a first approximation, independent of the bound-neighborhood of the Tl nucleus with molecular eigenvalue
state eigenvalue. Settirfg=mc? in the formulas above we E;, whose amplitudes are determined by the molecular cal-
obtain the approximate valuepd/qg) 1= —2620.1 fors;,  culation. For any diatomic molecule, we may select a repre-
spinors with k=—1, and @q/pg) +1=2711.5 for py»,  sentation for the degenerate Kramers pair of states belonging
spinors withk=+1. to a given molecular symmetry classification, such that
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the atomic symmetry types allowed in E4.00) are deter-
mined by a single value of the quantum numbes: * w,

which is the projection of the total electronic angular mo-
mentum ofi;(r) in the directionA. These functions are de-
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in which the upper limit of radial integration is restricted by
Eq. (99) to ber,. Inserting the explicit form of the spinors
into this matrix element, and multiplying by a factor of 2 for
the contribution toX; from its Hermitian conjugaté;" *,

fined with respect to a spherical polar coordinate system cenhe contribution taX is

tered at the Tl nucleus, and take the form

1[ P x e m(0,0)

M= QR (000

(101

The radial function'PJf‘"m‘(r) and Q}‘*‘ml(r) defined in Eq.
(101) differ from the atomic solutions of the Dirac equation
for spherically symmetric potentials defined in E®O),
since they depend gm| but are independent of the sign of
m, for fixed «. In principle, these functions may be obtained

from the molecular spinors by projecting out all Tl-centered

basis set components whose angular classificatior i)
from the single-particle molecular four-spinaf; , although

11_

X 3[po Pt +ap tag ;- (104

A similar treatment of the spinor contributions Xoinvolv-
ing the atomic symmetry types= —1 and—2, denoted by
X; 72, leads to the computational form

e N2
Xt 2:?[po po?

we emphasize that we have no need to do this in practicén which ther? dependence of the small-component ampli-
Atomic Tl-centered basis functions corresponding to symmetudes forx=—2 eliminates all terms depending gg* and

try types k={—1,+1,—2} are the only ones which make
any contribution toX, and all others are therefore excluded
in the formal expansion in Eq100) for the sake of clarity.

The explicit forms of the TI-centered atomic four-spinors
for m=3 and smallr are

Po Yo

0

T e
| 2) _|\/g%erg
V300 rvi
—Vipgtry?
1 \/gpglin

|+13)= .

iqleo

0

BRE At
Vipgrvl
~iVza 72}
| iV3ag7rovs |

where the state labgl has been suppressed. The ratio of
coefficientspg/qg may be deduced from EqE5) and (96),
and the value of eithepg or gz may be deduced from the
molecular amplitudes at=0. It is sufficient to consider only
the m=+ 3 spinors, since contributions t§ from m=—3
spinors are identical in value on symmetry grounds.

The most critical contribution in the evaluation Xf in-
volves the atomic matrix element

|—23)= (102

1
—(-13

rh—0ln

cosd
X; b= lim |—-1+13), (103
r

qu. All other combinations of symmetry type yield vanish-
ing contributions taX.

For the 29Tl nucleus,Vy=—1x 1P, and we may make
the bound-state approximatioB=c?, resulting in the re-
placements

(Vo+Cc2—E)=V,, (106)

(Vo—C2—E)=V,—2c2 (107

Substituting these values into the relations connecpg
with qg, EQs.(95) and(96), we find that

Vo

Vo—2¢2|

1,1_

XJ_ -1 +1]_ _

o PoJj (108

1
—§[p

Since |Vo|>2c¢?, we expand the difference in the second
bracket to find that

2
-1.+1

11 1
X; ':g[po Po (109

c
]jv_o-

The fact that we are able formally to expand Et08) indi-
cates that the direct evaluationf LI must involve a strong
numerical cancellation of large- and small-component con-
tributions. ForVy=—1.0771x 1 a.u. the cancellation of
large- and small-component contributions involves two or-
ders of magnitude, and can be achieved accurately only if
our molecular four-spinors possess the corregt/§o) “ val-

ues fork={—1,1}. In the nonrelativistic limit, only theg
values are involved in the calculation of, and we may
expect improved numerical stability of its numerical deter-
mination with respect to variations in the basis set.
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B. Magnetic effect Like the magnetic effect, the matrix elements of this matrix
operator are reduced to primitive integrals involving the sca-
lar basis functions which constitute the individual compo-
nents of the spinors. Since the functigy(r) is localized at

In the calculation of the magnetic coupling constatit,
we define the intermediate computational quantitiésand

M;, where . ) .
J the 29T nucleus, only one-center Gaussian basis function
" 1 In integrals are required, which were evaluated by elementary
dM=—2.2d, er >7me) M (110  means. The evaluation was further facilitated by the use of
P

an explicit 4X 4 matrix representation of the effective one-
electron operator in our numerical procedures, which ensures

NOCC .
M= E M, (111) the correct coupling of components.
=1
V. ATOMIC BASIS SET CONSTRUCTION
1 aX| ] ]
MJ:TWH — | [¥in- (112 In the series of calculations reported here on the elec-
2 =/ tronic structure of TIF, it was necessary to reconcile conflict-

_ _ _ ing computational features of the relativistic self-consistent-
The one-electron operator involved in the evaluation offield method. The main computational burden involved in the

M; may be written in the explicit matrix form determination of the electronic structure of any molecule is
weighted heavily toward the construction of the subvalence

0 0 0o I_ and valence orbitals which hold the molecule together, and

(@xl), 1 i 0 0o -I, not toward the core orbitals which contribute, to a good ap-

1 —— 0 , (113  proximation, effective local potentials in which the valence
V2 rd V23l 0 1.0 electrons move. The values of tRel-odd parameters, how-
-1, 0 0 0 ever, depend almost wholly on amplitudes in the core region,
and on contributions to molecular four-spinors framand

where we have assumed implicitly thatis aligned parallel p-type scalar Gaussian basis functions with exponent values
to the positivez axis. The angular momentum step operatordarger than 18. Since our calculations are based on the linear
have the usual definitiorls. =1, *il, . variation principle, these functions make a relatively minor
Matrix elements of the electronic operator defined by Eqcontribution to the total electronic energy of the system.

(113 are evaluated as linear combinations of primitive The usual dependence on the Undheim-Hylleraas-
Gaussian basis function integrals, using the property packagdacdonald theorerf6], which plays a pivotal role in non-

of the HERMIT module in theDALTON program[43]. The relativistic quantum chemistry, is not appropriate in the rela-
numerical algorithms employed in that program are dedivistic case, particularly if we are mainly interested in the
scribed by Saunderi®4] and Helgaker and Tayldé5]. It electronic amplitudes near a heavy nucleus. For any atomic
was convenient to include exactly both one- and two-centefsaussian basis set of finite dimension which is generated by
contributions to the magnetic effect, so we have made no usgonlinear optimization of the energy with respect to the ex-

of the reduction of Ref[19] into one-center radial and an- ponent set, the parameters derived by this procedure gener-
gular parts. ally provide poor representations of the four-spinor ampli-

tudes in the neighborhood of heavy nuclei. From a
fundamental point of view, any finite basis set approximation
of the bound-state eigenvalues of the Dirac equation need not
The weak neutral current interaction coupling constint pe a strict upper bound to the exact valuesty choice of
may be related to the computational intermedidteandT;  basis[41]. This presents no problem of principle or practice:
by the calculations are variational in the sense that we seek a
T stationary point in the energy functional for a given basis set,
d'=- \/ECTT, 114 and not an absolute minimum. We rely on the formal com-
pleteness of the basis in a given limit to justify the validity of
oce the approximation scheme.
T=2, T, (115 Since the Undheim-Hylleraas-Macdonald theorem is not a
reliable guide to the construction of relativistic basis sets
which are suitable for the calculation of thi&T-odd elec-

o

C. Weak neutral current effect

Tj=—i{yilep(r)) (vo); Al ), (118 tronic parameters, we devised a numerical test which pro-
vides a more sensitive measure of the quality of the spinors

where the component of the matrix operatgya in the di-  in the region of the Tl nucleus. In this region, the behavior of
rection of A has the explicit form any molecular spinor is dominated by the local potential due

to the nucleus, and we may apply the results of E®fs). and

0 01 (96) to the atomic components of each spinor. Since the elec-
00 0 -1 trostatic potential is spherically symmetric for small dis-
Yol,= (117  placements from the center of mass of the Tl nucleus, it is
0 0 0 simple to determine the ratiqpg/qy) defined by Eqs(95)
0 1 0 0 and (96) for each Tl-centered atomic symmetry type which
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FIG. 3. The convergence op/q,) with basis-set size for the
FIG. 2. The convergence ofjf/p,) with basis-set size for the 2p,,, spinor of TF®. The number of basis functiond in the
15y, spinor of TB%*. The number of basis functioméin the even-  even-tempered basis sets refers to Table I. The analytic value is
tempered basis sets refers to Table I. The analytic value is calcwalculated from Eq(96).
lated from Eq.(95).

i . ¢ . | q power of the number of basis functions. We conducted a
CO“F“ utgs to.a given ftour-spinor. in oraer to _construq 3eries of numerical tests on basis sets for atomic thallium,
basis W_hlch gives orbital elgenval_ues of chem_lcal qual'ty,’both using energy-optimized basis sets, and larger sets gen-
a;]nd Whlchhbgl\r/]esdgo?d t:epreselzntatlons of atomic SdenOI’S rated by systematic sequences of even-tempered functions.
the neighborhood of the nucleus, we constructed Sets qf, e case of the even-tempered sets, the exponents for all
Gaussian basis set exponents from carefully chosen geom%tymmetry types were selected from a single master list gen-

fic sequences. erated and labeled by the even-tempered prescription, Eq.

Our preliminary tests concern the single-particle solutions(118)_ These basis sets are defined by the parameters dis-
for TI8" in which the nucleus is modeled as a Gaussiarb|ayed in Table I1.

charge distribution, and for which we derived analytic results For comparison, an energy-optimized dual-family basis
in Sec. Il C for the spinor amplitudes near the_nucleus. Th&et was also used. In relativistic energy optimizations of ba-
same basis set exponetits} were used for th&e=—1 and g set exponenfaig], the relativistic contraction of electron
1 symmetry types, and are defined by the even-tempereg ity tends to favor the inclusion of basis functions with
prescription exponent values in the intermediate region at the expense of
i— ; those with small values which represent the valence region
N=aBNt wherei=1,2, ... 118 ) . :
= @by N (118 and those with very high values representing the nuclear re-

for a radial basis of dimensioN. The parametera=0.04  9ion. We replaced the four outer (p) exponents of the

andaﬁm’1=5.0>< 10 for all the basis sets, and this range of energy-optimized basis set with a short sequence of six
functions is sufficient to ensure that we have a number ofS€Ven even-tempered exponents, in order to represent more
functions which are able to represent the spinors in th@ccurately the valence region and polarization of the thallium

nuclear region, while retaining flexibility in the valence ba- atom. This basis set, labeled TI-_erg, ‘? presented in Table lIl.
sis. The finite difference results fromRrAsP [47] are re- The even-tempered sets defined in Table |l and the ex-

garded as a numerical standard and are assumed to define fﬁg(jed, ene_rgy-gpf[imized basis set defined in Table IlI are of
Dirac-Hartree-Fock limit for this system. From these SiMilar quality, if judged by the usual quantum-chemical
calculations we find the energies 3620.447 145 and yardstick of the total electronic energy. The basis sets Tl-erg
y i i -3 -3
—930.962 616 a.u. for thesl,, and o4, spinors, respec- and Tl".‘ give total energies 10€10"* and 11'9<. 1(.) au.,
tively. Inserting these values for the energies into £§5) respectively, above the Dirac-Hartree-Fock limit, which is
and (96), we obtain the §0,/dq) . Dirac-Hartree-Fock limit —20274.850 644 28 a.u. In Table 1V, we present orbital ei-

values, @o/pg)_1=—2611.28 andf§y/dg) +1=2709.20 for
these two single-particle spinors. In Figs. 2 and 3 we displa%
the convergence ofg/po) _; and (y/qo) -1 as the dimen- Y
sionN of the radial basis set, defined in Table |, is increased
It is very clear for bothk=—1 and+1 that the convergence
is smooth, and that the ratios of the leading-order powersg

TABLE |. Even-tempered basis sets with exponents defined
\i= a,B'N‘l, wherei=1,2, ... N. In order to give a comparable
description of both the core and valence regian-0.04 and
aBN 1=5.0x 10" for all the sets.

series coefficients tend toward the exact values dictated hy Pn N Pn N Pn
Egs.(95) and(96). 17 3.926 25 2.534 33 2.023
In the construction of basis sets for molecular calcula-19 3.400 27 2.366 35 1.943
tions, we are restricted in the maximum radial dimension thap1 3.026 29 2.229 37 1.875
we may use by practical considerations of the number op3 2.748 31 2.117 39 1.815

two-electron integrals which arise, which scales as the fourth
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TABLE Il. Even-tempered basis sets for the thallium atom used TABLE Ill. Relativistic dual-family 2524p16d10f, energy-
in this study. The notatiofiny; :n,,} denotes the first and last in- optimized basis set, Tl-erg, where the functions in the valence re-
dices, respectively, of the basis sets for each atdmialue, with  gion have been replaced with short sequences of even-tempered
respect to the master list & exponents defined by E¢118). In functions. The exponents are labekegdand thel values for which
order to give a good description of both the valence and nucleathe exponents are employed, are denoted{by}).
region the value ofay is fixed at ay=0.02 andaBN '=5.0

% 1C8, for all N. A N A {h}
Basis [y (N (N1 Ny} 50 980 195.85 9 18 626 562.61 )

11526 467.50 ) 3444 971.589 [0)]
TI-1 2.606  2525p12d8f (1:25,2:26,13:24,15:32 3216 581.844 ) 800 643.0337 16)
T-2 2352  2828pl4dsf (1:28,2:29,14:27,17:24 984 796.7808 ) 215 991.5182 1)
Tl-3a 2.165  3%31p15d8f (1:31,2:32,16:30,19:26 326 098.2911 ) 65 027.984 47 1)
TI-3b 2.165 3%31p15d8f3g (1:31,2:32,16:30,19:26,23:25 114 874.8526 ) 21519.260 32 1)
Tl-4  2.022  3434pledof (1:34,2:35,17:32,21:29 42 723.849 63 ) 7 794.177 919 16)

16 646.467 27 §,d) 3071.601 225 1)
genvalues, and the ratiog){/pg) -1 and @Eq/qg) +1. Ob- g;ggégg ;22 zg; 15:;)%'22223523 ﬁ)
tained using basis sets TI-4 and Tl-erg, and compare theq_12 ' ' ' '
with the numerical values obtained using the finite differenc 44.074 062 £d) 274.761 7212 1)
DrogramGRASP[47]. %58.424 386 9 §,d) 133.303 1257 10, )

In all cases, the orbital eigenvalues obtained using basig>0-212 6586 $d) 64.772 61541 )

sets Tl-erg and TI-4 are in good agreement with the finite-22-964 838 4 %.d) 32.734 087 26 0.f)
difference results. For spinors ef= —1 symmetry, both ba- 60.835 291 56 %d) 16.411 963 38 ©.f)
sis set calculations generate values @f/pg) —, which are 30.792 721 53 %.d) 8.065 415 659 0.1)
in satisfactory agreement with the finite difference values1°-312508 74 %.d) 3.882289 818 0. f)
with basis set TI-4 proving to have a slighter superior per-/-516 325476 %.d) 1.866 490 000 0. f)
formance. However, for the symmetry-type=+1, the 3.622059784 £d) 0.897 349 000 0.7)
(Po/qo) -1 Values obtained using basis set Tl-erg are whollyl.741 370 000 %d) 0.431 418 000 i)
unsatisfactory. This deficiency indicates that phype func- ~ 0.837 199 000 %.d) 0.207 412 000 )
tions in this basis set include insufficiently large exponents t®.402 500 000 £d) 0.099 717 500 16)
describe the contraction of small-component electron densit.193 509 000 .d) 0.047 941 100 16)
in p4/, four-spinors. The basis set labeled TI-4 does not suf0.093 033 400 &) 0.023 048 600 16)
fer from this deficiency, because it contains several evene.044 727 600 %)

tempered functions whose exponents are sufficiently large to
represent the structure of the spinors in the nuclear region.

From the analytic solutions of Dirac spinors for small dis- odate the polarization of the atomic fluorine shells by the

placements from center of mass of the nucleus, itis clear thghmation of molecular orbitals. The basis set have been op-
a small number of Gaussian-type functions is sufficient tq;i-ed for the negative fluorine iof49].

represent atomic four-spinors in this region, provided that the
exponent values are chosen to be sufficiently large that they
are able to represent functional behavior dictated by the first
few power-series coefficients. Clearly, the even-tempered set
TI-4, has sufficient flexibility to be able to represert=1

S;c;rir;,c_ripelpgordsoér; H:)I? };ﬁ'ﬁe” ’S;Vr:geﬂrt:: Svr;errggs?ﬁ)rt]m?zda In order to demonstrate that the basis sets used in this

sufficient number of diffuse basis functions so that our rep-Work contain sufficient variational freedom in the valence

resentation of the chemistry of Tl is not sacrificed when we’£9!%" to represent accurately the chemical bonding of the
come to describe the bonding of TIF. Clearly, in many- > ground state of TIF, we completed a number of Dirac-
electron systems where the valence spinors have severdartree-Fock(DHF) calculations of the electronic structure
nodes and very small amplitudes near the nucleus, construéf TIF, and determined chemical parameters such as the
tion of a basis set which is suitable for the calculation ofequilibrium bond lengthr(y), harmonic force constankg),
PT-odd effects is particularly difficult. Nevertheless, we find and harmonic vibrational frequency). All the thallium
that our calculateghy/qg ratios do converge with basis set fluoride calculations reported in this paper were performed
size, and the largest basis set we have used, Tl-4, is close with the DIRAC program packagE38], but, during the course
convergence. For these reasons, we will use the large evenf this study, a number of comparative calculations of both
tempered basis sets in the subsequent investigations of tledectronic structure anBT-odd effects were also performed
structure of TIF. using independentmethods employed in theERTHA pro-

The electronic structure in the vicinity of the fluorine gram packag¢39]. Precise agreement was found between
nucleus is essentially nonrelativistic. For this reason we havihe results obtained byiRAC andBERTHA if identical values
adopted a nonrelativistics®p basis set centered at the fluo- of the speed of light, the internuclear separation, the nuclear
rine nucleus, augmented by tvabtype functions to accom- structure parameters, and basis set exponents were used.

VI. RESULTS AND DISCUSSION
A. Chemical properties of TIF
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TABLE IV. Comparison of orbital eigenvaludsa.u) and the ratios of power series coefficients; Apg) 1 and (Pg/qo) + 1, for average
of configuration calculations for the thallium atom. The values were obtained using the finite-difference pesgiem47], the energy-
optimized basis set, Tl-erg in Table lll, and the even-tempered basis set, Tl-4 in Table Il. The vl (; and (Py/dg) +1 are given
only for |k|= %1, because these are the symmetry types for which this parameter contributes most crucially Teothe parameters.

GRASP (Po/do)” Tl-erg (Po/do)” TI-4 (Po/do)”

1s —3164.179 703 14 —2611.14 —3164.178 507 76 —2603.56 —3164.179 856 86 —2614.94
2s —568.844 019 19 —2617.40 —568.843 413 13 —2609.92 —568.843 867 47 —2620.65
2p- —544.949 523 40 2708.66 —544.948 178 72 2049.27 —544.949 394 10 2706.72
2p —468.916917 71 —468.916 523 51 —468.916 786 33

3s —138.363 359 38 —2618.43 —138.362 838 69 —2611.02 —138.362 796 18 —2621.02
3p- —127.652 414 82 2709.64 —127.651 685 77 2050.17 —127.651 926 81 2707.65
3p —110.528 050 13 —110.527 569 58 —110.527 517 15

3d- —93.083 780 78 —93.083 281 55 —93.082 690 12

3d —89.459 950 59 —89.459 531 60 —89.459 448 46

4s —32.292 565 14 —2618.68 —32.291 976 89 —2611.14 —32.291 764 88 —2618.42
4p- —27.644 266 92 2709.87 —27.643 624 15 2050.39 —27.643 509 82 2708.01
4p —23.427 452 61 —23.426 875 63 —23.426 681 20

4d- —15.843 560 55 —15.842 991 21 —15.842 694 12

4d —15.046 486 92 —15.045943 24 —15.045 789 54

5s —5.619 084 82 —2618.74 —5.618 481 96 —2611.54 —5.618591 89 —2616.96
4f- —5.190 802 89 —5.190 222 59 —5.189 828 54

af —5.014 787 63 —5.014 242 73 —-5.013963 12

5p- —3.985 138 93 2709.93 —3.984 53012 2050.47 —3.984 681 01 2708.03
5p —3.217 326 84 -3.216 750 75 —3.216 904 03

5d- —0.894 494 36 —0.893 956 43 —0.894 097 14

5d —0.806 17261 —0.805 686 78 —0.805 809 00

6s —0.449 192 49 —2618.75 —0.448 861 31 —2611.67 —0.449 050 92 —2616.99
6p- —0.211 35573 2710.10 —0.211 057 58 2050.49 —0.211 255 32 2708.01
6p —0.176 544 79 —0.176 253 10 —0.176 444 24

A series of calculations were performed using basis sebALTON [43]. From these calculations, we deduced the spec-
TI-3b at internuclear separations centered at the experimentabscopic parameters, the values of which are presented in
value of the equilibrium bond length. The variation of the Table V.
total energy with the bond length is displayed in Fig. 4, on  Since the DHF and HF calculations were performed in the
which is superimposed the vibrational zero-point energy, assame basis, we may interpret differences between the two
suming that TIF behaves like a harmonic oscillator. The corzalculations directly, as single-particle relativistic effects.
responding nonrelativistic Hartree-FodkiF) calculations  yse of the Dirac single-particle Hamiltonian instead of the
were performed in the same basis using the program systefRgnrelativistic Schifdinger operator causes a small expan-

sion of the internuclear bond length. The better agreement of

~20574.4080 the HF and experimental,, values must be regarded as for-

Total tuitous, since the DHF and HF values do not include any
o electron correlation, which tends to stabilize the system.
~20374.409 ¢ ] TABLE V. Relativistic Dirac-Hartree-FockDHF) and nonrela-

tivistic Hartree-Fock(HF) values of the equilibrium bond length
req, the force constark,, and the harmonic vibrational frequency
v, for the 12" ground state of thallium fluoride. The calculations
203744100 | ] have been performed with the basis set TI-3b in Table Il. The re-
sults are compared with the experimental val(i&spt,) quoted in
Huber and Herzber{62], and the force constants and vibrational
frequencies are related through the reduced md&ss

Zero point vibrational level

20874410, 6o 205 210 215 220 Feq A) ko (Nm™%) vo (cm ™)
Bond distance (A)
DHF 2.092 227 470
FIG. 4. The DHF potential-energy surface for thallium fluoride HF 2.085 265 509
in the vicinity of the equilibrium bond length. The zero-point vibra- Expt. 2.084 233 477

tional level is shown in the figure.
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TABLE VI. Variation of X;, X, M, T (a.u), and the electric field in the direction af, E, (a.u) for
calculations on thallium fluoride with basis sets for thallium defined in Table Il. Spinors avithm|
#+3 give no significant contributions X, M, or T, and only the value oX; for =3 spinors with
significant contributions tX is included in the main body of the table. The most significant atomic contri-
butions to the molecular spinors are indicated. The values were obtained with an internuclear distance of 2.10
A, which is close to the DHF equilibrium bond length. Powers of ten are given in parentheses.

i TI-1 TI-2 Tl-3a TI-3b Tl-4

1 15,,,(T1) 67.21 64.78 67.99 67.06 70.01
2 25,,(T1) —70.81 ~90.16 —120.48 —88.50 —103.99
3 2p(T1) ~65.29 41.67 114.82 89.33 105.95
5 2p3(TI) 43.10 46.10 51.64 4275 45.22
6 3s,4(TI) 84.63 86.58 54.63 116.66 115.42
7 <al) -30.18 —26.66 —20.40 -63.18 ~57.38

9 3pa(T1) —351 3.29 21.34 —2.49 0.92

15 4s,,(TI) —27.50 —43.02 —105.04 ~31.77 —34.45
16 4p,(TI) 222.28 138.66 132.35 86.85 67.10
19 4po(TI) 72.14 82.53 110.28 81.35 79.13
25 55,,(T1) —463.71 —494.83 —585.03 —552.23 —520.10
33 5p1(T1) 354.14 379.46 515.38 500.62 490.47
35 5paa(T1) 457.26 472.86 507.69 496.57 466.22
36 25,(F) —143.83 —139.86 ~14531 —14531 —150.46
42 sy Tl)+2p(F)  —2365.12  —2330.64  —2421.13  —242049  —2495.50
43 2p(F) —34.26 -33.31 —38.30 —38.30 —43.03
45  6s,(T)+2p(F)  5950.65 5884.52 6101.26 6103.63 6335.18
X 8098.38 8089.30 8491.22 8491.54 8746.63
M 13.64 13.62 13.66 13.66 13.63
T —22.48 —22.42 —22.41 —22.41 —22.44
E, —8.284(-4) —1.359(-3) —2.016(-3) —7.123(-5 —1.252(-3)

Both k, andv,, however, are significantly better representedalso that the qualificatiofully optimized in this case, refers

by DHF theory than by the HF results. On the basis of thes@ot only to the linear variational parameters, but also to the
observations, it would appear that the shape of the potentiglositions of the origins at which each basis function is cen-
energy surface generated by the DHF calculations is a goo'@red. To investigate the completeness of our basis sets, we
approximation to the true Born-Oppenheimer function in thecalculated the electric field at the thallium nucleus in the
equilibrium region, except that it should be uniformly shifted direction of A due to all of the charges in the TIF molecule

to slightly shorter internuclear separations, and to an energ{Ex). the results of which are given in Table VI. For the
which is lower than the DHF equilibrium value by an I-3b basis set we also calculated the electric field at differ-
amount equal to the correction to the DHF energy due Nt internuclear distances. These results are summarized in

electron correlation and small corrections from the Breit in-'aple VII. In common with quantum-chemical experience,
teraction. we find a strong basis set dependence on this quantity, even

The derivation of thé® T-odd parameteX defined in Sec. though the field was calculated at a bond distance of 2.10 A,

Il A requires that the electronic structure calculations be erplose to the minimum point of the DHF potential for all of
qu . . . : P€Tthe basis sets. If we compare the valuegkgfobtained for
formed in an electronic environment in which the net force

he Tl | ish h iibri bond | hbasis sets TI-1, TI-2, TI-3a, and TI-4, we find no obvious
on the Tl nucleus vanishes at the equilibrium bond lengthgy giematic behavior as the basis set dimension is increased,

For afully optimizedself-consistent-field wave function or a g4 no evidence that the value is likely to vanish if we
wave function at the Hartree-Fock limit, the HeIImann-Were to continue to augment the basis with msrep-, d-

HF . b 1 1
Feynman force on the nucleus,™, defined by or f-type functions. These calculations also show that the
residual electric field is nearly constant with respect to varia-

FHF=—(VV), (119 > . ; ;
tions in the internuclear separation, and that it does not van-
length. Any calculation with these basis sets therefore for-
F=—V(H). (120 mally invalidates the assumptions built into the derivation of

the PT-odd operators. Calculations with the energy opti-
The equivalence of these quantities, and the requirement thatized basis set Tl-erg give similar results, yielding an almost
the average force on the nuclei must vanish at the minimunaonstant electric field of-0.0015 a.u. for all internuclear
value of the potential energy surface, is therefore a criticabeparations sampled by the classical ground-state vibrational
test of the quality of the basis setee, e.g., Ref50]). Note  amplitude.
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TABLE VII. Variation in X, M, T, andE, (a.u) with changes in the internuclear separatiorfd), for
calculations with the basis set TI-3b in Table Il. Powers of ten are given in parentheses.

r 2.00 2.05 2.10 2.15 2.20
X 8625.82 8586.42 8491.54 8361.80 8202.43
M 13.34 13.56 13.66 13.66 13.58

T —23.19 —-22.85 —22.41 —-21.92 —21.37

E, —6.070(- 4) —3.112(- 4) ~7.123(-5) 1.226(- 4) 2.780(- 4)

The Hellmann-Feynman theorem may also be satisfied It can be seen from Table VI that of tHeT-odd param-
approximately in a calculation that is optimized only with eters,X is by far the most sensitive to the completeness of
respect to the linear variational parameters, if the basis set e basis set. This is not surprising, sinéds determined
“almost complete,” and particularly if it includes additional from the spinor amplitudes at a single point. The parameters
functions which are able to reflect the polarization of allp and T, on the other hand, are derived from global inte-
atomic shells due to binding1]. A nonrelativistic polariza- - grals over the four-spinor amplitudes. In both cases, the in-
tion function for atomic Tl is ofy type, and we must include (eqrals involve operators which very strongly weigh the re-

scalar functions of this type in the large component basisgion near the center of mass of the Tl nucleus, but the

The corresponding scalértype functions in the small com- _distribution of the integrand over these highly localized

Eglrz]rgeb;z:cﬁ;etiol?mtr?ngcﬂzziir|1rg]] ?t:geéotr?]pi?g;gyn;ﬁlzekgaert]ﬁgeight functions is sufficient to reduce the sensitivityNof
by a significant factor. It is for this reason that basis set TI-3bandT to numerical errors in the spinor amplitudes. If we

was designed. It includes an atomic basis for Tl and F Of/lxamine the dg_ta for.all basis setst we “T‘d that the values of
good quality, with polarization functions for all atomic shells :?md T exhibit satisfactory stability with respect_to the

in order to restore the equilibrium of forces at the Tl nucleusP@Sis Sét, and the values seem to be converged with respect
in the region of the potential energy minimum. The effect ont® Pasis set size to within 2% of the DHF limit. The total

E, is dramatic, reducing its value by two orders of magni-Value ofX in Table Vlis less stable with respect to basis set,
tude. With this basis, the Hellmann-Feynman force vanishednd in the analysis below we will summarize the numerical
at an internuclear separation of 2.12 A, close to the minimungXxperiments we have performed to demonstrate that the final
point of the potential energy surface. values are sufficiently stable for our purpose. _

We also performed calculations of the spectroscopic pa- The two smallest basis sets Tl-1 and TI-2 both give values
rameters in Table V with the basis set TI-3a in order toOf X of approximately 8100 a.u., the intermediate basis sets
compare with the TI-3b calculations. These calculations gavé!-3a and TI-3b yield a value of approximately 8500 a.u.,
identical results to TI-3b with the precision given in Table v and the largest basis set Tl-4 yields a value close to 8750 a.u.
showing that even if the polarization functions for the deepHowever, a spread in the results of this size is to be expected
valencef spinors has large consequences for the electriéom the calculated values gd, and g, for the thallium
field at the thallium nucleus it has a negligible effect on theatom, if the values for each basis set are inserted in Eq.
spectroscopic properties at the DHF level. We did not calcu(104. Of the basis sets, we expect Tl-4 to be the most accu-
late the spectroscopic parameters with the other basis seféte, both because it contains the largest number of functions,
but from our experience with calculations of valence properand because it gave the best results for the ragitoo in
ties we expect that the position of the minimum of the calculations of the structure of atomic Tl. The ratios are close
potentia|-energy surface will vary by less than a few picom-tO the finite difference results, and we expéctcalculated
eters for the basis sets which we have considered. from this basis set to differ by not more than a few percent
from the DHF limit. It is interesting to note that while the
total X is quite stable with basis set, the contributions for the
core spinors vary substantially, and there is no apparent trend

In the case of thé®T-odd parameters, where there existsin the results. The difference between values derived from
no experimental quantity with which we may compare tothe basis sets Tl-3a and TI-3b is particularly significant. As
assess the accuracy of our calculations, it is imperative thatwe saw in Sec. VI A, adding-type polarization functions to
detailed study be made of the sensitivity of the parameters tthe basis set changes the electric field at the thallium nucleus
details of the calculation. These details include the choice ofiramatically, and the Hellmann-Feynman theorem is satis-
basis set, basis set superposition errors, the electrostatic eqfied, to a good approximation. The difference in the calcu-
librium condition, and the internuclear separation. In Tablelated electric field using basis sets TI-3a and TI-3b induces
VI we summarize the calculated values %yM, andT for  large changes in the values of tg¢ contributions, including
the basis sets TI-1-TI-4. All the parameters are calculated aven a change of sign for one of the core spinors. At the
a bond length of 2.10 A which is close to the equilibrium same time théotal value ofX is only changed from 8491.22
bond length for all the basis sets. The individual spinor conto 8491.54 a.u., and the dramatic change in the electric field
tributions X; are also given for all the spinors with a signifi- has almost no effect on the total value for tRi$-odd prop-
cant contribution toX. In Table VIl we summarize the cal- erty. The remarkable conclusion to be drawn from these ob-
culatedP T-odd parameters at different internuclear distanceservations is that cancellations in the core-orbital contribu-
for the TI-3b basis set. tions are sufficiently precise that only the valence electrons

B. Calculation of PT-odd parameters
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make any significant contribution to the parameters of intercalculations appear to be so sensitive to the choice of basis
est, and that the valence spinors are quite insensitive to theet. Strong numerical cancellations in the large- and small-
addition of g-type polarization functions, and to the failure component parts oK~ ! are expected to occur, because
of the electric field at the Tl nucleus to vanish at the equilib-every orbital contribution is calculated as a linear combina-
rium when an incomplete basis set is used. tion of terms of the type defined by E{.08) and this is also
The causes of the significant fluctuations in the valuX of what we observe in our calculations. The TI-4 calculations,
as the basis set is changed are apparent if we examine for example, yieldK=8747 a.u., which is obtained from the
greater detail the orbital contribution; . The most signifi- sum of large- and small-component contributions, which are
cant data are probably th§ values for the spinors labeled 2 149 630 and—140 883 a.u., respectively. This imposes un-
and 3. Molecular spinory, is derived from the Tl 8, usually stringent requirements on the basis set expansion of
atomic spinor, while spinog is a weakly perturbed TIR;,,  the spinor amplitudes in the neighborhood of the Tl nucleus,
atomic spinor. These two orbitals are very close in energy tevhich the basis set Tl-erg fails to fulfill.
one another, but are widely separated in energy from all In summary, all of the basis sets except TI-3b are of the
other TIF single-particle states. The spatial extent of bottsame quality for the calculation of the electric field at the
spinors is restricted to the region in the neighborhood of thehallium nucleus, giving results that are not in agreement
Tl nucleus. Consequently, any nonspherical effective potenwith the Hellmann-Feynman theorem and a field that does
tial, arising either from the molecular environment, or due tonot vanish close to the equilibrium bond length. Of these
an incompleteness in the basis set, mixes the atorsjg 2 basis sets, only Tl-erg gives a wholly unsatisfactory result
and 2p,,, atomic orbitals to formy, and 5 in proportions  for X, even though it yields the lowest total energy for TIF.
which maintain the orthonormality of the molecular four- Augmenting the basis set TI-3a with extra polarization func-
spinors. There is a delicate cancellation between contributions, resulting in TI-3b, gives a basis set where the
tions from ¢, and 3 which arises through symmetry con- Hellmann-Feynman theorem is approximately satisfied. At
siderations, rather than from details of the effectivethe same time the difference in the total valueXofor basis
molecular potential which causes the mixing of the coresets TI-3a and TI-3b is negligible, even though the core-
atomic orbitals to form the core molecular spinors. Similar,orbital contributionsX; are sensitive to the residual electric
more elaborate cancellations of contributions occur for eacfield generated by Tl-3a. We conclude that accuracy of the
of the shells of core atomic orbitals, which are mixed duringtotal energy, orbital energies, and single-particle matrix ele-
bond formation to produce an orthonormal set of moleculaments such as the electric field at the nucleus provided in-
spinors. The final values of is derived almost wholly from sufficiently rigorous tests of basis set quality in the calcula-
the contributions from molecular spinags, and,s, which  tion of X. The basis set which is used must instead be able to
are the valence orbitals formed by the formal transfer of arreproduce finite difference amplitudes in the nuclear region
electron from the thallium atom to the fluorine atom whenand in particular give values for the ratipd/qo) close to
the ionic molecule TIF is formed. As a result, we concludethe DHF limit.
that theP T-odd parameters are sensitive mainly to the non- One common situation in which basis set incompleteness
spherical effective potential which results from bond forma-has important effects in quantum chemistry is due to basis
tion, and which determines the amplitudes of the valenceet superposition error. It is possible that the use of incom-
spinors, rather than to details of the electric field at the centeplete atom-centered basis sets could bias our calculations of
of mass of the Tl nucleus. the electric field andPT-odd parameters because of the
The most extreme example of sensitivity to the basis seasymmetric distribution of basis functions which this entails
arises if we calculatX using the energy optimized basis set, for TIF. Consequently, we investigated the effect of intro-
Tl-erg. This basis results in the lowest total energy for TIF ofducing “ghost” functions, by copying the F-centered basis
all the basis sets, but we find thdt= — 25068 a.u., which to the mirror point in space with respect to reflection in the
differs from the value obtained using our systematically con-Tl-nucleus coordinates. We also performed calculations of
structed sets of functions by a factor of approximatelg.  the PT-odd parameters for the Tlion in the unsymmetric
The reason for this apparent discrepancy is that the functionisasis set where the F ghost basis set was introduced at the
which comprise Tl-erg have been optimized using total enposition of the F atom in TIF. We concluded from this study
ergy as the guiding criterion of quality. In the calculation of that no value oKX, M, andT is in error by more than 1% due
X, the cancellation between contributions from the compoto an unsymmetric distribution of the basis functions in the
nents is subtle, and involves mainly the large components afet. However this insensitivity parallels that which was ob-
sy, functions, and the small components mf,, functions.  served when polarization functions were added to the basis:
Clearly, the optimization procedure which generated the bathe changes iiX; for the core orbitals may be by as much as
sis set Tl-erg does not maintain this delicate balance, despite€0—20 a.u., but the changes cancel due to the orthonormality
its ability to represent single-particle quantities such as orconstraints of the molecular spinors, so that only bonding
bital eigenvalues. Extension of the basis to include nsre contributions determine the total values.
and p-type basis functions with large exponent values is re- In Table VII, we present the variation X, M, T, andE,
quired in order to improve the spinor representations near thdue to variations irr, calculated using basis set TI-3b. The
nuclei; this extension would have a negligible effect on therange of values for in the table spans the whole region of
calculated values of the chemical properties or the total enthe zero-point vibrational amplitude given in Fig. 4. To a
ergy. good approximation, we find thal and E, vary linearly
From Egs(108 and(109 we may deduce the key feature with internuclear separation although the agreement in the
of the numerical evaluation ak which explains why our case ofE, is not perfect, presumably because of basis set
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incompleteness. Interestinglyyl appears to have a weak, molecular orbitals to atomic spinors. In Table IX we com-

quadratic dependence on—r.,, achieving a maximum pare our values for these parameters with those obtained in

value close to the point at which the electric field vanishesRef. [21].

The average value of and T over the ground-state vibra-

tional amplitude is well-represented by its valueratr g, C. Determination of d,, Cy, and Q

because of the approximately linear dependence of these

quantities on (—r¢g). Strictly, one should take the vibra-

tional average oX, M, and T, but the variation is either

linear or so small over the vibrational amplitude that the

value atr =r 4 is sufficiently accurate for our purposes.
Given that we have established the insensitivity of the

experimentally relevant parametetsM, andT to variations dM=—-1.923x 10" de a.u. (122

in the bond length, basis set superposition error, polarization

functions, and residual electric fields at tHf8Tl nucleus, we  The volume effect parameter’ involves the nuclear struc-

summarize our final results for our best basis set, Tl-4 irture factorR, which we take to be

Table VIII. We estimate that these values differ from the

The calculation ofi™ in Eq. (48) requires the use of some
experimentally determined parameters, which we take to
have the valueZ=81, My=205m,=3.764x 10° a.u. and
gn=1.638. From these data and the valuevbfifrom Table

IX, we derive the relation

vibrationally averaged values calculated at the DHF limit by R=2.9 fn? (122
less than 8% foiX, and 2% forM andT. g
In order to make a comparison with earlier determinations =1.036x10 " a.u. (123

of the PT-odd parameters, we performed a calculatiorXof
by settingc=10 000 a.u., which is sufficiently large for us to
obtain an estimate of in the nonrelativistic limitc—oe. In
this case, the contribution t§; from terms of the form de-

This value was obtained by Brown, and quoted in R2L].
Calculations of the nuclear structure factor rely on model
potentials derived mainly from experimental scattering data,

fined by Eq.(104 involve no strong cancellation, because and postulated forms for an effective nucleon-nucleon inter-
| ' action. In view of these limitations of nuclear structure cal-

do—0 for all atomic symmetry types. We find that the non- culations, and the large cancellations involved in the evalu-

relativistic value ofX is 1130 a.u., and that its value is in- . .
o e . . o ation of the difference between the mean-square charge and
sensitive to variations in the basis set. The relativistic en-

nancement factor defined by Hinds and Sandas s SR OIS LT e SHEUET OF MRS TR
approximately seven. This is in good agreement with th 9 Y

analysis of Khriplovich[52], who suggested that its value %Z?UZOA?)T ?m?;feflf:;’bl\éwlt;'nw(;ugb?;i)r/f'cal model. Using the
should be 6.5 on the basis of atomic calculations. It is also irf '

agreement with the estimate of the relativistic enhancement dV=9.062¢10"%d.. a.u 124
factor of Coveney and Sanddil], who calculated its value ' P (129

by matching nonrelativistic molecular orbitals to relativistic 3nd note thaﬂM/dp is about one-fifth of the magnitude of
atomic spinor amplitudes. _ _dYd,, and has the opposite sign.

From Eq.(109), it is clear that the dominant contribution  n"order that the treatment of the volume and magnetic
to the electronic matrix element from the nuclear densityeffects is consistent with the theoretical analysis, we have
comes fromV,, and not from the details of the nuclear treated the sign of the EDM as significant, rather than taking
shape. This implies that the use of a Gaussian nucleugze absolute value, as was done in R§1€] and[21]. We
whose mean-square radius is chosen to match experimeniglay quite simply adjust the most recent value of Coveney

parameters, is of sufficient accuracy for this problem, proand sandarg21] to conform with our treatment of the total
vided thatV, matches more sophisticated estimates obtainedhffect arising due ta,, yielding

for example, from a Fermi distribution.

It is unlikely that the inclusion of electron correlation will |d¥d +|d¥
have a significant effect on the calculated values<piM, d—=2.827>< 10 % a.u. (125
andT. The functional form and spatial domain of the opera- P
tors associated with these quantities resembles those encoun- _ 8
. . - =3. 10°H
tered in the calculation of NMR shielding tensors. For 3.505< 10" Hz/(e cm), (126)

closed-shell systems and for the shielding tensor components

associated with heavy nuclei, a self-consistent-field treatmenyhich may be compared with the results of our calculations

of this property is usually reliable. This observation is invali-

dated for open-shell systems, in which core polarization dV+dM

plays a crucial role, or for the shielding tensors associated d

with light nuclei, in which the nuclear electrostatic field is P

unable to dominate the physical behavior. Of course, it is =8.851x 10'8 Hz/(e cm).

desirable that many-body effects be investigated in the con- (129

text of the PT-odd interaction parameters, and is a study

which we hope to perform in the future. By taking the ratio of our result with that of Coveney and
The most recent previous determination)qfM, andT  Sandars, and adjusting the analysis of R2#] by this fac-

was made by Coveney and Sand&@d| using nonrelativistic  tor, we obtain the revised proton EDM limd,=(—1.5

quantum chemistry methods and a procedure which matches2.5)x 10~ 2% cm. Revised limits for the tensor and Schiff

=7.138<10 ¢ a.u. (127
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TABLE VIIl. Four-spinor eigenvalues;, and orbital contributions tX, M, andT (a.u), obtained using
our best basis set, Tl-4 for the 45 spinors witi™>0. The total electronic energy obtained in this basis set
is —20374.453 554 00 a.u.; the total valuesXqofM, andT for all 90 electrons are, respectively, 8746.63,
13.630, and—22.442 a.u.

i &j X; T M;

1 —3164.193 799 39 70.01 -0.133 0.130

2 —568.857 226 60 —103.99 0.396 —0.097
3 —544,962 817 28 105.95 —0.516 0.014
4 — 468.930 338 41 0.00 0.000 0.003
5 — 468.930 045 53 45.22 0.000 0.181
6 —138.376 337 03 115.42 —0.425 0.107

7 —127.665 461 32 ~57.38 0.284 ~0.014
8 —110.541 590 98 0.00 0.000 —0.005
9 —110.540 606 03 0.92 0.000 —0.005
10 —93.096 748 69 0.00 0.000 0.001
11 —93.095 815 64 0.15 0.000 0.005
12 —89.473 748 47 0.00 0.000 0.000
13 —89.472 91321 0.00 0.000 0.006
14 —89.472 547 02 ~0.00 0.000 0.003
15 —32.305 529 50 —34.45 0.032 ~0.105
16 —27.657 334 11 67.10 —-0.289 —0.042
17 —26.185188 41 —-0.00 0.000 0.016
18 —23.441576 19 0.00 0.000 —0.015
19 —23.439 498 37 79.13 0.000 0.284
20 —15.857 855 03 0.00 0.000 —0.001
21 —15.855 581 32 1.14 ~0.000 0.034
22 —15.061 518 46 0.00 0.000 ~0.001
23 —15.059 508 95 0.00 0.000 0.019
24 —15.058 550 63 0.01 0.000 0.016
25 —5.633527 91 —-520.10 1.203 —1.001
26 —5.205 766 38 0.00 0.000 0.000
27 —5.203 446 49 0.00 0.000 0.004
28 —5.202 269 08 0.02 —0.000 0.005
29 —5.030 266 94 0.00 0.000 0.000
30 —5.028 316 93 0.00 0.000 0.003
31 —5.027 000 32 0.00 0.000 0.003
32 —5.026 342 31 0.04 0.000 0.004
33 —4.000 323 54 490.47 —-2.189 —-0.159
34 —3.235 481 89 0.00 0.000 —0.042
35 —3.230 751 89 466.22 —0.011 1.720
36 —1.425377 94 —150.46 0.289 —0.272
37 ~0.914 92511 0.00 0.000 ~0.006
38 —0.909 683 59 0.68 ~0.002 0.021
39 —0.828 466 23 0.00 0.000 ~0.003
40 —0.823 986 34 0.55 0.003 0.053
41 —0.823457 76 0.00 0.000 0.038
42 —0.560 884 17 —2495.50 5.284 -5.383
43 —0.511 923 24 —43.03 0.304 —0.027
44 —0.511 141 43 0.00 0.000 —0.050
45 —0.391 670 69 6335.18 —15.450 11.371

moment interaction constan; and Q, respectively, are in Ref.[21] by factors ranging between 3 and 5, and conse-
obtained directly by taking ratios of the valuesTtofndX in quently our estimates of the bounds dp, C;, andQ are
our work with those used in the analysis[@#]. The results tighter than previous limits by corresponding factors. There
are summarized in Table IX, and compared with the earlieis a difference in our treatment af,, compared with that
results from the experiments of R¢R4]. adopted in Refd.19,21], since we have retained the signs of
Our results forX, M, andT are larger than those obtained the interaction parameteks andM throughout our analysis,
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TABLE IX. Numerical values ofX, M, andT, and theP T-odd parameterd,,, Cy, andQ deduced from
the TIF molecular beam experiments reported in R24].

X (au) M (au) T (au) d, (ecm) Cr Q (e fm®)

[21,24 2128 441 —4.12 (-3.7£6.3)x10 %2 (—1.5x2.6)X10 7 (2.3+3.9)x10 1
This work 8747 13.63 —22.44 (—15+25)x10°2 (—2.8+4.8)x10°8 (5.6-9.5)x10 !

rather than working with the absolute values of the constitutainty, because of the more accurate treatment of electron
ent parts. Nevertheless, these revised estimates, based on correlation which is possible in atomic calculations of
electronic structure calculations and the experiments of Refuclear hyperfine structure.
[24], are the tightest available for the fundamerfal-odd In order to circumvent the use of nuclear hyperfine inter-
interaction parameters,, C, andQ. actions in the determination af,, while exploiting the ex-
perimental sensitivity afforded by molecular experiments on
_ _ spin-rotational structure, Sauer, Wang, and Hifig§] de-
D. Other PT-odd interaction parameters vised a molecular spin interferometry experiment on the
Limits on theP T-odd parameterd,,, Cr, andQ are not paramagnetic specie® YbF. The designed sensitivity of
the only ones which could be deduced from our calculationsthis experiment isl=10"?% cm, which is far in excess of
but they are the ones for which the TIF experiment provideghat which may be obtained from our calculations of TIF.
the tightest limits. We shall now briefly consider other These experiments involve the direct effectf on the spin
PT-odd interactions in the context of the TIF experiment. population of a molecular YbF beam, and requires the sepa-
The effective operatdd 4 corresponding to the interaction rateab initio calculations of the open-shell structure of this
of an electron EDMd,, with an external electric fieldE, radical for their interpretation. These calculations have now

may be written in the alternative fornj9] been performed, and will be reported elsewHé&rd.
One may also derive values of the scalar interaction con-
Hg=—de(yo—1)o-E (129  stantCg defined in Eq.(49) by comparing the value of

derived from the TIF experiment with nuclear structure cal-
) 5 culations. Flambaum, Khriplovich, and Sushkf®5] have
=—2idCyoysp”. (130 argued that nuclear interactions cause a significant enhance-

ment of interactions involving:ls. This effect is amplified

These effective operators are equivalent in the sense thQY the fact that the nucleon con;tributions@g, are additive,
their expectation values are identical if calculated in exacf€sulting in an enhancement df compared tad” of order
eigenstates of a Dirac operator. In practice, B9 in- A the nuclear mass number. Based on our own calculations
volves only the localized small component density, &nis of X and the TIF experimental results, we estimate the limits
N ) !. . . _(_ —6 .
effectively dominated by the nuclear Coulomb field, soOn the scalar interaction to Kes=(—2=3)x10 °. While
many-body contributions t& may be neglected, to a good this provides a limit which is comparable with that obtained
approximatior(29]. It is found that agreement between ma- from direct measurements on atomic caesium, the tightest
trix elements of this one-body approximation to E@29 limit on this quantity is obtained by experiments on atomic
and those of the exact one-body form EtB0) is obtained at thallium, which are an order of magnitude smaller; previous
about the 3% leve[29,53. Either form of the operator is determinations ofCs are summarized in Table 3 of the re-

PT-odd in the electronic coordinates, and vanishes identi¥ieW by Matensson-Pendri[l55]. Moreover, the atomic lim-
cally in first-order for a closed-shell molecule such as TIF. Alts are determined solely py el_ectromc structure cglculatlons,
nonzero interaction energy may, however, be obtained if wa@nd involve no uncertainties introduced by couplmg to the
consider thecombined first-order effects ofHy and the huclear structure. Since th&°TI nucleus has a single un-
nuclear hyperfine interaction. Flambaum and KhriplovichPaired proton, whose mean-square charge and dipole distri-
[54] obtained limits ond,, from the TIF experiment by ex- _butlons are very S|m|la'r, nuclear ;tructure uncertampes may
ploiting this combined effect, which were later refined in introduce large theoretical errors in any valuey derived
Ref.[24]. The limits obtained by this approach were summa-from the TIF experiment.

rized in Table 3 of the review article by Wansson-Pendrill
[55], yielding de=1.7+2.9x10 2% cm. Our own calcula-
tions reduce this limit by a factor of about 4, since the the-
oretical values depend on quantities related to the calculation There has been a rapid growth in the development of rela-
of X and M, and are related to the Coveney and Sandarsvistic ab initio computational methods by which the elec-
values from which the limit is derived by the same factor.tronic structure of molecules containing heavy elements may
However, measurements on paramagnetic species which abe calculated. Such approaches have been made feasible be-
directly sensitive tad, yield even tighter limits and for ex- cause of the resolution of difficulties associated with the fi-
ample, electron EDM experiments on atomic thallium setnite basis set parametrization of the Dirac equation, develop-
limits of (—3+8)%x10 ?’e cm ond,, which is an order of ments in numerical algorithms to evaluate multicenter
magnitude tighter than the limits derived from the TIF ex-integrals over two-body interactions, and the steady increase
periment. This value also involves less theoretical uncerin the power of electronic computers. In order to exploit

VII. CONCLUSION
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these resources bettatirect computational algorithms for the European Science Foundation. The numerical results
multicenter integral evaluation have been develo3&j39. were obtained through the grant of computing time to J.K.L.
The processor power available from workstation computerérom the Research Council of NorwaProgramme for Su-
is used in computationally intensive applications to reduce opercomputing
eliminate the dependence on external storage devices. This
approach was first investigated in the context of nonrelativ-
istic calculations of the structures of extended molecules
containing many nucl€i57]. It may be adopted without sig-
nificant change to the calculation of molecules containing a Following Schiff[15], we define the one-particle opera-
few atoms and many electrons, which is the configuratiortors
characteristic of many interesting problems in heavy-element
chemistry and molecular physics. Similarly, conventional 1
many-body theory may be applied by adopting the direct T=-2 EV.Z (A1)
algorithms of quantum chemistry to exploit basis sets of mo- ! !
lecular four-spinors expanded in a finite basis set of
Gaussian-type functior[19,58,59. 1
These technological developments have been applied to aVo=2 qiqu f pci(Npej(r')———————d°r d°’,

physical problem which is of considerable importance to our ) Iri— fr=r |

. : e (A2)
understanding of fundamental interactions in nature, and for
which only semiempirical computational approaches have
existed in the padi55,60. By deriving effective interaction _ ‘ , , 3
Hamiltonians from parametrized, phenomenological models v E. q.j pailDni+ndT, A3)
of PT-odd interactions, we have demonstrated that electronic
interaction constants may readily be derived from the elec- (h—r+r—r")

U:¢ qldjﬂjff !
i#]

APPENDIX A: EFFECTIVE PT-ODD MAGNETIC
MOMENT INTERACTION

tronic four-component amplitudes which are obtained from
DHF calculations. From the calculated parameters and from
published experimental data, we have derived bounds on the

[ri=r+r—r']3

. . X X (r! 3 3,7
value of the electric dipole moment of the protat,, the pci(Npw;(r)dr dr’, (A4)
tensor coupling constar@;, and the Schiff moment of the
20! . . .
qujrlnir;iuecsl.eus,Q, which are the tightest available of these W:Z diO'i'Vif pmi(r) g(ri+r)d3r, (A5)

From a computational point of view, the successful calcu-

lation of thg electronic volume effegt parameﬁt@provides a  wherepg(r) is the charge density of particie py;(r) is its
demonstration that the DHF approximation, when formulatedsjectric dipole moment density,; is its electric dipole mo-
using basis sets which satisfy the restricted kinetic balancgent, q; is its chargem; is its mass, andb(r)=cA° is the
prescription, provides numerical values of the electronic amgjectrostatic potential at The electric dipole moment asso-
plitudes of high accuracy. The four-spinor amplitudes ob-cjated with particld is in the directions; . All second- and
tained using this approach may be used in much the samggner-order effects involving dipole-dipole interactions are
way as basis set approximations of spin-orbital amplitudes ifeglected.
nonrelativistic quantum chemistry. The methods deve_loped Schiff demonstrates that the Hamiltonian of the system,
here may be applied to problems beyond the narrow field ofy an pe written in the form
P T-odd interactions. The characteristic feature ofRill-odd
operators considered here is the coupling that they involve H= : - 1

: A =expiQ)Hoexp(—iQ) +3[Q,[Q,Holl+ - - -,
between the electronic charge and current densities in the RIQ)HoeXA(—1Q) +2[Q,[Q.Ho]] (A6)
neighborhood of heavy nuclei with the electrostatic and mag-
netlc_flglds associated with thoge nuclei. Th|§ is a}lso.a Chacry'vhereQ is defined in Eq.37), and Hy is the part ofH
acteristic feature of the calculation of magnetic shielding an ndependent of any EDM's. In the present casty=T
spin-spin coupling constants in systems containing heavy e';LV 3‘V+ H Furtr):ermore ' P
ements, and in the calculation of nuclear hyperfine constants *° me '
in molecules. We expect that the numerical experience

gained in the present study will be of immediate relevance in i[Q,Vo]=U", (A7)
the study of these chemical properties using relativiatic
initio quantum chemistry. i[Q,V]=wW', (A8)

whereU’ andW' are constructed frord andW by replac-
ing the dipole density, ;(r) by the charge densityc ;(r).
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of H.M.Q. This work has also received support from thethat Q involves only the coordinates of a single proton, we
Norwegian VISTA program under Grant No. V6414, andfind thatU—i[Q,Vy]=0 andW—i[Q,V]=0. To first order
fruitful exchanges between Oxford and Oslo have been fiin d,, the nonvanishing parts di may be written in the
nanced by generous travel grants from the REHE program dbrm
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H=Hy+i[Q,Ho]+(U—i[Q,Vo]) +(W—i[Q,V]) A factor of v has been moved through the brackets so that
) the first two operators are proportional ta-(), rather than
—i[Q,H,] (A9)  to mixtures involving @ p). The effect of this is to change
. ) . the free factors ofa to free factors ofo in the first two
=exp(iQ)Heexp(—iQ)—i[Q,H ], (A10) brackets.

We now assume that we require only the expectation
value of this operator in an eigenfunction of the Dirac
Hamiltonian of the form

as required.

APPENDIX B: EFFECTIVE PT-ODD MAGNETIC FIELD

INTERACTION
In order to derive an effective operator for the magnetic [c(a-p)+BmE+V(N)]|¥)=E|s), (B9)
interactions, Hind$61] employed the operator identity
so that, for eigenfunctions of this operator equation, we can
write
rx a rx a 3 r pr r
px(r_3)_ =N Xp—(p'a)rg—r—saﬂLr—s(a'p) )
r-p (a~p)|¢>=E[E—BmCZ—V(r)]Il/f>- (B10)
—a—. (B1)

The operatorE=(E—Bmc®—V) commutes with botho
In order to reduce this operator to a computationally conveandR, and the expectation value of the first two terms in the
nient form, we make use of the relations operator may be written, by virtue of the commutation of the
operators, as

(o-A)o=A+ioXA, (B2)
o(o-A)=A—ioXA, (B3) )
(AE[2R—(0o-R)o—o(o-R)])=(&E[2R—R—-i(6XR)—R
(o-A)(o-B)=A-B+io-(AXB), (B4) +i(eXR)])=0. (B11)
R= r (B5) Only the third part of the complete operator has a nonzero

expectation value, which may be written

which are valid for arbitrary spin-independent operatars . )

- . e . i

andB. Substituting them into the defining equation, we have B 735{[I—i(o-><l)]—[l+i(o->< D1} = = (ax1),
r r

pX(RX @)~ (R a)p=[(a-p)R-(a-p)(o-R)al (B12
+[R(a-p)~a(o-R)(o-p)] (B6)
in agreement with the result in RgfL9].
+i{o- (pXR)a+ o o (RXp)]} The approximation arises because we assume that the
(B7)  eigenstates are simultaneous solutions of the Dirac equation
for a local single-particle potential/(r). In fact, we could

have terms involving pairs of electrons and mixed electron

=(a-p)[R—(o-R)o]+[R—0o(o-R)](a-p) coordinates|i,j}. Martensson-Pendrill discusses this in her
i review article[55], and notes that such effects are generally
+—la(o- )= (o) al. (8g)  smallin the related hyperfine interaction problem, and can be
r neglected.
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