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Ab initio Dirac-Hartree-Fock calculations of chemical properties
and PT-odd effects in thallium fluoride
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The theory ofPT-odd interactions relevant to existing experimental measurements of the hyperfine structure
of TlF is reviewed. We outline a relativistic electronic structure theory based on single-particle four-component
Dirac spinors, and implemented using methods borrowed fromab initio quantum chemistry. Numerical cal-
culations are reported of the electronic structure of TlF, some of its chemical properties, and of itsPT-odd
electronic matrix elements. From these results, and from published experimental data, we derive bounds on the
value of the electric dipole moment of the proton,dp , the tensor coupling constantCT , and the Schiff moment
of the 205Tl nucleus,Q, which are now the tightest available for these quantities. General issues regarding the
calculation of the electronic structures of molecules containing heavy elements are also addressed.
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I. INTRODUCTION

In his contribution to the 70th birthday celebrations
Einstein, Dirac analyzed the forms of the dynamical theor
which are derived from Einstein’s relativity principle@1#.
The special theory of relativity, which is sufficient to d
scribe the dynamics of atomic and molecular systems,
quires that the laws of nature be independent of the posi
and velocity of the observer. Dirac noted that any chang
the position and velocity of an observer can be constructe
a relativistically invariant way from a series of infinitesim
transformations which do not involve reflections in the spa
or time coordinates. He remarked that he could see no re
why the laws of nature need be invariant under space or t
reflections, despite the fact that all the exact physical la
known at that time certainly did conform to this principl
This appears to be the first published demonstration th
valid physical law need not be symmetric with respect
space and time inversion. Purcell and Ramsey went fur
@2#, and suggested that the validity of fundamental theo
which are not symmetric with respect to spatial invers
(P-odd!, time inversion (T-odd!, or spaceand time inversion
(PT-odd! could not be discounted without experimental e
dence.

Following the theoretical and experimental insights
Lee and Yang@3#, this evidence was obtained by Wuet al.
@4#, who observed that nuclearb decay is aP-odd process.
This led to an extensive search for other phenomena w
violate reflection symmetry, and to the development of th
ries to account for the phenomena. Of these, the first succ
ful description of P-odd processes was supplied by t
vector-axial theory of Feynman and Gell-Mann@5#, which
was an extension of Fermi’s theory ofb decay, but utilized
mathematical techniques developed for the theory of qu
tum electrodynamics. This formed the basis for later dev
opments, culminating in the standard model of the el
571050-2947/98/57~2!/920~25!/$15.00
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troweak interaction formulated by Glashow@6#, Weinberg
@7#, and Salam@8#. Consequently, we now have a comple
and renormalizable theory which accounts forP-odd inter-
actions. From this theory may be derived an effective int
action which represents the interaction between electrons
the weak neutral currents within nuclei. This effective inte
action, whose interaction strength is determined by the Fe
constantGF52.2310214 a.u., may give rise to optical rota
tions in atomic metal vapors, energy differences betwe
enantiomeric forms of chiral molecules, and nonvanish
transition probabilities between levels for which a dipo
transition is strictly forbidden in the absence of the intera
tion @9,10#. Precision measurements of these tiny transit
rates in the nuclear hyperfine structure of caesium vap
combined with elaborate many-body calculations of the el
tronic structure of atomic caesium@11#, provide compelling
evidence of the internal consistency of the electrowe
theory, and verification that the interaction strength is p
portional to the so-called weak charge of the nucleus. In
most recent of these experiments@12#, the detection of a
nuclear anapole moment was reported, which results fro
nuclear spin-dependentP-odd interaction.

Despite more than 40 years of experimental effort, ho
ever, there exists only one known example of aT-odd pro-
cess, the decay of the neutralK0 meson@13#. Such an inter-
action is not described by the standard electroweak mo
and the origin of this effect is not understood, although s
eral particle physics theories have been proposed to acc
for it @14#. Several of these theories also predict the existe
of PT-odd interactions. On the grounds of symmetry,
PT-odd interaction caused by any mechanism would re
in an experimental signature which is characteristic of
effective electric dipole moment~EDM!. In the most
straightforward interpretation of this property, a subatom
particle such as an electron or nucleon may possess a
vanishing EDM, or a nucleus may acquire an EDM throu
920 © 1998 The American Physical Society
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57 921AB INITIO DIRAC-HARTREE-FOCK CALCULATIONS . . .
PT-odd nuclear forces. Alternatively,PT-odd weak neutral
current interactions may give rise to couplings with exter
fields which resemble those caused by a static separatio
charge. The consequences of the interaction of an elemen
or nuclear EDM with an external electric field were fir
considered by Schiff@15#, and are reviewed in Sec. II.

It was Sandars who first recognized that polar molecu
containing heavy elements present an opportunity to de
the existence of an elementary or nuclear EDM@16#. He
realized that spin-dependent interactions are enhanced b
internal electric field of a polar molecule, since spi
rotational states close in energy but opposite in parity wo
be mixed. Furthermore, there is a strong enhancement fa
in heavy elements, necessitating a relativistic treatmen
the electronic structure. Of all the possible candidates
study, TlF was chosen as the most suitable, because o
chemical stability, high polarity and polarizability, simp
electronic structure, the enhancement of the interaction
to the 205Tl nucleus, and the simple nuclear structure, wh
involves only a single unpaired proton (205Tl! or proton hole
(19F!. A series of experiments involving TlF have been p
formed@17–24#, the results of which have been used to pla
bounds on fundamental nuclearPT-odd interaction con-
stants. It is remarkable that these low-energy molecu
physics experiments may act as sensitive probes of pos
high-energy particle interactions beyond the standard e
troweak model.

The interpretation of these experiments requires the
culation of matrix elements of effectivePT-odd interaction
operators, and it is with this task that the current pape
concerned. Attempts to extract the relevant electronic par
eters from nonrelativistic electronic structure calculatio
have been made by Hinds and Sandars@19# and Coveney and
Sandars@21#, while nuclear structure calculations ofPT-odd
nuclear moments have been performed by Flamba
Khriplovich, and Sushkov@25#. Recently, Parpia@26# has
reported calculations ofPT-odd effects in TlF using Dirac-
Hartree-Fock wave functions. If calculations using modera
sized basis sets of similar quality are compared, the res
reported in Ref.@26# are in reasonable agreement with tho
obtained in this paper. However, we have been able to
plore the limiting values of thePT-odd parameters by em
ploying much larger basis sets, and have made a deta
study of the sensitivity of our results to basis set superp
tion errors, and to the variation in the electric field in t
neighborhood of the205Tl nucleus. Unlike the calculation
reported in Ref.@26#, we have chosen the basis set para
eters using a procedure which ensures accuracy of the
lecular spinors in the critical region in the neighborhood
the 205Tl nucleus. In this work, we calculate the releva
electronic structure parameters using relativistic quan
mechanics, and computational techniques borrowed fromab
initio quantum chemistry. In order to perform these calcu
tions to the required level of accuracy, this research has
cessitated the development of new computational techniq
and represents a considerable advance in the state of th
of molecular electronic structure calculations.

We have already made a brief communication regard
ab initio calculations of thePT-odd electronic parameters i
TlF @27#, though no detail was given about how the calcu
tions were performed. In this paper, we review in Sec. II
l
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PT-odd effective operators associated with the interaction
a proton EDM,dp , with the internal electric and magneti
fields of the TlF molecule, the coupling constant of a nucle
tensor interaction, and the Schiff moment of205Tl. Although
much of this material has already been published, these
sentations @19,21# have been in the context of hybri
schemes involving relativistic atomic structure theory a
nonrelativistic quantum chemistry. Here we collect togeth
the essential theoretical material in order to formulate co
putational algorithms which are appropriate to ourab initio
relativistic molecular structure calculations. In Sec. III, w
outline those aspects of relativistic quantum theory which
relevant to our calculations, and describe the relativistic s
consistent field procedure. Algorithms are presented in S
IV which describe how the relevantPT-odd electronic pa-
rameters were extracted from our many-electron wave fu
tion for the TlF molecule. In order to assess the accuracy
our calculations, results are given together with a discuss
in Secs. V and VI both for thePT-odd parameters and fo
chemical properties such as the calculated equilibrium b
length, harmonic force constant, and vibrational frequen
We also give details about how the fundamentalPT-odd
interaction constants are derived from ourab initio calcula-
tions and from the experimental data. The paper conclu
with an assessment of the general relevance of our inve
gation to molecular structure calculations in Sec. VII. So
technical details have been presented in appendixes in o
to avoid unnecessary interruption of the text.

II. EFFECTIVE PT-ODD NUCLEAR INTERACTIONS

A PT-odd effect would arise in an atom or a molecu
through an effective interaction of the form

Heff52dsN–l, ~1!

where the nuclear spin operator is denoted bysN , andl is a
unit vector in the direction of the molecular axis. We restr
our attention to the evaluation of coupling constantsd, which
arise due to the presence of a proton EDM, a weak neu
current interaction, or an nuclear EDM induced byPT-odd
nuclear forces.

Nuclear magnetic resonance experiments have been
formed on a molecular beam of TlF subjected to exter
electric and magnetic fields@17,18,20,22–24#. In these ex-
periments, the hyperfine structure of TlF is measured w
the external fields aligned both parallel and antiparallel.
nonzero frequency shiftdn in the hyperfine structure result
ing from the reversal of one of the external fields is t
experimental signature of aPT-odd interaction. The energy
shift is related to the coupling constant in the effective int
action Hamiltonian by@20,24#

hdn54du^sN–l&u. ~2!

A nonvanishing coupling constantd may arise through a
number ofPT-odd processes, which we denote by the v
ume effect (dV), magnetic effect (dM), weak-neutral current
effect, (dT), and the Schiff moment effect (dQ). In the fol-
lowing sections, effective operators are derived which est
lish the relations between these experimental parameters
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922 57QUINEY, LAERDAHL, FÆGRI, AND SAUE
the proton electric dipole momentdp , a weak neutral curren
coupling constantCT , and the nuclear Schiff momentQ.

For the sake of clarity, we formulate our effective ope
tors using labels adapted specifically for the TlF molecu
Any polar moleculeMX, fulfilling the same nuclear structur
restrictions satisfied by TlF, may be treated by similar me
ods, using the notational replacements Tl→M and F→X.
The wave function of the TlF system is denoted byC, and is
assumed to have the approximate form

C5CN~rn!CF~r f !Ce~re!CR~rN ,I !. ~3!

This comprises a nuclear wave functionCN(rn) for 205Tl, a
nuclear wave functionCF(r f) for 19F, an electronic wave
function Ce(re), and a spin-rotational wave functio
CR(rN ,I ). The coordinate system is defined in Fig. 1, whe
r i is the position of electroni in the coordinate system cen
tered at the thallium nucleus, andrn is the position of
nucleonn, either a proton or neutron, within the nucleus. T
internuclear axisl is aligned parallel to the externalz axis.
In our model of the TlF molecule, the nuclei are treated
classical charge distributions which generate external e
trostatic fields in which the electrons move. The 90 electr
are point charges, whose coordinates we designate bre
5(r1 ,r2 , . . . ,r90). The electronic wave functionCe(re) is
an antisymmetrized product of single-particle spinors~Slater
determinant! ck , of the form

Ce~r1 ,r2 , . . . ,r90!

5S 1

90!D
1/2U c1~r1! c2~r1! ••• c90~r1!

c1~r2! c2~r2! ••• c90~r2!

A A A A

c1~r90! c2~r90! ••• c90~r90!
U . ~4!

The electronic probability distribution is used to construct
adiabatic potential-energy surface on which the nuclei mo

FIG. 1. Coordinate systems and notation for the thallium flu
ride molecule. The position of electroni is specified byr i , and that
of nucleonn, either a proton or a neutron, byrn . Each of these is
defined with respect to a spherical polar coordinate system wh
origin is located at the center of mass of the205Tl nucleus. The
internuclear axis and the orientation of the spherical polar coo
nate system which specifies the internal coordinates of the mole
is defined by the vectorl, which for the sake of convenience w
have aligned parallel to thez component of an external Cartesia
coordinate system. The vectorl is directed toward the center o
mass of the fluorine nucleus, labeledF in the diagram.
-
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-
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s
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The classical electrostatic equilibrium of the molecule is
tablished by the condition that the forces on the nuclei v
ish.

For a system of particles in electrostatic equilibrium, ea
member of which possesses a point charge and an E
there is no first-order interaction energy between a partic
EDM and the electrostatic field generated by the other po
charges. This restriction is often referred to as Schiff’s th
rem @15#, and also holds for particles with a finite size if th
charge and dipole distributions are identical. The details
the charge distribution within the atomic nuclei, howev
are not included in the determination of the electrosta
equilibrium state, because the nuclear structure is determ
by Coulomb forces between protons and non-Coulomb sh
range interactions between nucleons. Due to the action
these non-Coulomb forces, different charge and dipole
tributions may occur, and a nucleon EDM may experienc
nonvanishing first-order interaction energy with the elect
field generated by the electron density. This is called
volume effect, and will be discussed in Sec. II A. In a m
lecular system the electrostatic equilibrium may also be p
turbed by magnetic forces, and this magnetic effect will
reviewed in Sec. II B. In Sec. II C we examinePT-odd ef-
fects which arise through an interaction between the elec
density and the weak neutral current, and in Sec. II D
present the theory of the Schiff moment interaction, which
the result ofPT-odd nuclear forces. Since the magnitudes
all of these interactions depend on the electron density in
neighborhood of the nuclear volume, a large enhancemen
the effects is expected for molecules containing a heavy
ement such a thallium.

A. Volume effect

The volume effect is a first-order interaction between
EDM of the thallium nucleus and the electric field of th
electrons under the assumption that the charge and di
distributions in the nucleus differ. Ifqn are the charges of the
constituent nucleons in205Tl, qi are the charges of the othe
particles in the system~electrons, and the19F nucleus!, and
Ei ,n is the electric field at nucleonn due to charged particle
i , then the average electrostatic force on the Tl nucleus

^F&5^Cu(
i ,n

qnEi ,nuC&. ~5!

The first-order matrix element involving the interaction
this internal electric field with elementary nucleon dipoles

^HEDM&5^Cu(
i ,n

2dn–Ei ,nuC&. ~6!

Applying Gauss’s theorem to the nuclear charge distributi
which we assume to be spherically symmetric, the elec
field Ei ,n may be written in the form

Ei ,n52
r i

r i
3

qi@12Q~r i ,r n!#, ~7!

where the Heaviside step functionQ(r i ,r n) is defined by

-
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57 923AB INITIO DIRAC-HARTREE-FOCK CALCULATIONS . . .
Q~r i ,r n!5H 1 if r i,r n

0 if r i.r n .

We actually require the force on a nucleonn due to a
charged particlei . Consequently, the effective operator f
the electrostatic force on a spherical ball of nucleon cha
Qn and of radiusr n , due to a particlei with chargeqi , is

F i ,n52
r iQnqi

r i
3

52
r iqnqi

r i
3 @12Q~r i ,r n!#. ~8!

For the whole nucleus, we find that the force is

^FN&52^Cu(
i ,n

qnqi

r i

r i
3 @12Q~r i ,r n!#uC&, ~9!

and the interaction energy of the nucleon dipoles with
field is

^HEDM&5^Cu(
i ,n

qi

dn–r i

r i
3 @12Q~r i ,r n!#uC&. ~10!

These are just the Eqs.~5! and ~6! of Ref. @19# with the
conventional replacement of spherical tensors by their C
tesian equivalents. Following the notation of Ref.@19#, we
adopt the definitions

^CNu(
n

qnuCN&5Z, ~11!

^CNu(
n

qnQ~r i ,r n!uCN&5Z%Z~r i !, ~12!

^CNu(
n

dnuCN&5DsN , ~13!

^CNu(
n

dnQ~r i ,r n!uCN&5DsN%D~r i !, ~14!

wheresN is a unit vector parallel to the nuclear spin,I . The
total nuclear charge isZ, %Z is the nucleon density,D is the
total nuclear dipole moment, and%D is the nucleon dipole
density. Integrating over the nuclear space, we obtain

^FN&52Z^CRCeu(
i

qi

r i

r i
3 @12%Z~r i !#uCRCe&, ~15!

^HEDM&5D^CRCeu(
i

qi

sN–r i

r i
3 @12%D~r i !#uCRCe&.

~16!

If we now ignore contributions from the protons in the
nucleus because of the localization of all the nucleons
comprise it, adoptl as the internuclear unit vector, and su
stituteqi521a.u. for the electrons, we obtain

^FN&5Z^CRCeul(
i

cosu i

r i
2 @12%Z~r i !#uCRCe&
e

e

r-

at

5Z^CRuluCR&^Ceu(
i

cosu i

r i
2 @12%Z~r i !#uCe&,

~17!

^HEDM&52D^CRCeu~sN–l!(
i

cosu i

r i
2

3@12%D~r i !#uCRCe&

52D^CRusN–luCR&^Ceu(
i

cosu i

r i
2

3@12%D~r i !#uCe&. ~18!

At the equilibrium internuclear separation, the electrosta
force on the nucleus vanishes. Setting^FN&50, it follows
from Eq. ~17! that

D^CRusN–luCR&^Ceu(
i

cosu i

r i
2 @12%Z~r i !#uCe&50,

~19!

sinceZ is just a number, and the left-hand side of Eq.~19! is
just the projection of a vector proportional tol in the direc-
tion of sN , taken in the limit that the magnitude of th
vector vanishes. Adding Eqs.~19! and ~18!, we obtain

^HEDM&52D^CRu~sN–l!uCR&^Ceu(
i

cosu i

r i
2

3@%Z~r i !2%D~r i !#uCe& ~20!

at the equilibrium geometry. This is the expectation value
an effective operator which may be written in the form of E
~1!, in which the electronic part of the matrix element in E
~20! forms part of the coupling constantdV. Substituting the
definitions of%Z(r i) and%D(r i) into Eq. ~20!, one obtains

^HEDM&52D^CRCNul•(
n

S qn

Z
sN2

dn

D D uCRCN&

3(
i
E

0

2p

dw iE
0

p

sinu i du i

3E
0

r n
r i

2 driS c i
†~r i !

cosu i

r i
2

c i~r i !D . ~21!

For smallr n , the nonvanishing component of the electron
part of Eq.~21! in the directionl, may be written

lim
r n→0

2pr n
2

3 S (
i

]

]zi
c i

†~r i !c i~r i ! DU
ri5rn

5r n
2X, ~22!

in which the quantityX is determined by the gradient of th
electronic density at the center of mass of the nucleus, anzi
is the component ofr i parallel tol. The equivalence of the
electronic parts of Eqs.~21! and ~22! may readily be estab
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924 57QUINEY, LAERDAHL, FÆGRI, AND SAUE
lished by expanding each single-particle state,c i(r i), in a
complete basis set centered at the205Tl nucleus.

Since the205Tl nucleus has a single unpaired 3s proton in
the shell model, we setD5dp , and the total nuclear EDM to
dpsN . Integrating Eq.~21! over the nuclear coordinates, w
obtain

^HEDM&52dpXR^CRusN–luCR&, ~23!

where

R5^CN~rn!u(
n

S qn

Z
2dn,3sD r n

2uCN~rn!&. ~24!

The factordn,3s is included in the nuclear structure factorR
to indicate that only the distribution function of the unpair
3s proton is to be included in the evaluation of the nucle
EDM. Comparing Eqs.~23! and ~1!, we define the effective
strength of the volume effect,dV, by

dV5dpXR. ~25!

This formulation expresses the experimental coupling c
stantdV in terms ofdp , which is the fundamental paramet
of physical interest, an electronic structure factorX, whose
value we will determine byab initio Dirac-Hartree-Fock cal-
culations, and a nuclear structure factorR. The principles
involved in the calculation ofX are derived from quantum
electrodynamics, and the accuracy with which we may
termine its value is limited solely by considerations of co
putational complexity.

B. Magnetic effect

Section II A discussed the possibility of observing t
EDM of a charged particle subjected to the strong for
within a nucleus, which invalidates the assumption of el
trostatic equilibrium inherent in Schiff’s theorem@15#. Per-
turbation of the electrostatic equilibrium by magnetic inte
actions also raises the possibility of additionalPT-odd
effects. Here we investigate the interactions between
magnetic field of the electrons in TlF with a point nucle
with mass MN , spin \/2, magnetic momentmNsN , and
EDM dpsN . SeparatePT-odd operators may be derive
from the interaction between the magnetic field and
nuclear current density and between the magnetic field
the nuclear magnetic moment. We denote thesePT-odd in-
teractions byHM

1 andHM
2 , respectively, and demonstrate th

similarities in the form of these operators allow them to
amalgamated into a single effective magnetic interacti
which we denote byHM .

The interaction of an EDM with the electromagnetic fie
of the electrons is given by@28,29#

dpc~g4g5gmgn!N~]mAn2]nAm!

52dpbNFsN–E2sN–

]A

dt
1 i aN–BG , ~26!

in which the usual summation convention for repeated in
ces has been adopted. The components of the electro
netic four-potentialAm are derived from the partition ofA
r

-

-
-

s
-

-

e

e
d

,

i-
ag-

into a scalar partA0 and a vector potentialA, so thatA
5(A0,A). Operators labeled with the subscriptN refer to the
nuclear coordinates. If we ignore the possibility of tim
dependent vector potentials, then this is just the class
expression for the interaction between a dipole and an e
tromagnetic potential, and is the starting point for the de
vation of HM

1 . The Dirac Hamiltonian for the nucleus in th
presence of this electromagnetic field may be written as

H5caN–~p2ZeA!1bNMNc22ZecA0

2dpbN~sN–E1 i aN–B!. ~27!

wherecA0 is the scalar potential at the nucleus due to
electron distribution,E is the associated electric field, andB
is the magnetic field due to the electron current.

In order to derive an effective operator proportional
sN–l, the Foldy-Wouthuysen transformation is employed
we classify the constituent parts ofH into odd and even
operatorsÔ and Ê, we find that

Ô5caN–~p2ZeA!2 idpbNaN–B, ~28!

Ê52ZecA02dpbNsN–E. ~29!

The Foldy-Wouthuysen transformation of this operator
well known @30#. If we recall that the components ofaN
anticommute withbN , retain only the lowest-order contribu
tions in 1/MN and dp , and eliminate all terms involving
products ofA andB, we can writeH as

H5bNS MNc21
Ô2

2MNc2D 1Ê ~30!

5bNS MNc21
p2

2MN
2

Ze\

2MNc
sN–B

1
idpbN@~aN–p!~aN–B!2~aN–B!~aN–p!#

2MNc D
2ZecA02dpbNsN–E. ~31!

The operator defined by Eq.~31! contains the usual parity
conserving terms, such as the rest mass energy, nonrela
tic kinetic and potential energies, and the coupling of
nuclear spin magnetic moment of magnitude (Ze\)/(2MNc)
with the magnetic field generated by the electronic curre
As discussed below, this last term will give rise toHM

2 , but
since the205Tl nucleus has an internal structure which caus
the magnitude of its experimental magnetic momentmN to
differ from the prediction of the point-particle Dirac theor
we must treatPT-odd effects arising from this source sep
rately. In addition, we obtain aPT-odd interaction Hamil-
tonianHEDM of the form

HEDM5dpS i

2MNc
@~aN–p!,~aN–B!#2bsN–ED , ~32!

where the commutator is given by

@~aN–p!,~aN–B!#5~aN–p!~aN–B!2~aN–B!~aN–p!.
~33!
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The transformation Eq.~31! has effectively decoupled th
large- and small-component contributions, because any p
uct of four-component operators of the for
(aN–p)(aN–B) is block diagonal, with each 232 block in-
volving operators of the Pauli two-component for
(sN–p)(sN–B). Considering only the interaction of the exte
nal electric field of the electrons, with the EDM of a poin
like proton under the assumption of point charges at equ
rium, the term2dpbsN–E has a vanishing expectation valu
because of Schiff’s theorem. We can therefore write
equivalent effective operator in terms of the four-compon
operators of the form

HM
1 5dpS i

2MNc
@~sN–p!,~sN–B!# D . ~34!

We now turn our attention toHM
2 , which is an effective

PT-odd Hamiltonian arising from the magnetic moment
the nucleus. The interaction between an intrinsic nucl
magnetic momentmN5gNmn and the magnetic field of the
moving electrons has the form

Hm52gNmnsN–B, ~35!

where the nuclear magneton,mn is defined by

mn5
e\

2mpc
, ~36!

and where the mass of the proton,mp , is approximately
1836me . This term is analogous to the third term in Eq.~31!,
in which the nuclear magneton is replaced by the experim
tal value of the nuclear magnetic moment of205Tl.

Following Schiff @15#, we define the infinitesimal dis
placement operatorQ, for a spin-12 particle whose electric
dipole moment isdpsN , by

Q5
dp

Ze\
sN–p. ~37!

Schiff pointed out that a dipole moment may be regarded
arising from the infinitesimal displacement of a point char
and we show in Appendix A that the HamiltonianH of the
system can be written

H5exp~ iQ !H0exp~2 iQ !2 i @Q,Hm# ~38!

to first order indp , whereH0 is that part of the Hamiltonian
which is independent of electric dipole moments. This allo
a determination of the eigenfunctions of the first term inH,
cn8 , in terms of the eigenfunctions ofH0, cn

0 , through the
relation

cn85exp~ iQ !cn
0 . ~39!

Since there is no dependence ondp in the eigenfunctions of
H0, there is can be no correction, to first order indp , arising
from the first part of the Hamiltonian. Here we are concern
with the interaction of a single-proton EDM,dpsN , which is
present in the second part ofH, and implicitly assume tha
interactions involving the EDM’s of all other particles mak
no net contribution. This is possible because there is a si
d-

-

n
t

f
r

n-

s
,

s

d

le

unpaired proton in the shell model of the205Tl nucleus, and
the closed-shell electronic structure of TlF eliminates
contributions from nonvanishing electron EDM’s. To fir
order indp , the effectivePT-odd interaction may be written
in the form

HM
2 52 i $QHm2HmQ%

5
idpgN

2Zmpc
$~sN–p!~sN–B!2~sN–B!~sN–p!%. ~40!

Noticing that this is proportional toHM
1 , we combine Eqs.

~34! and ~40!, and generalize the result for anN-electron
system to form the completePT-odd magnetic interaction

HM5 idpS 1

2MNc
1

gN

2ZmpcD(
j

@~sN–p!,~sN–B!# j .

~41!

The expectation value of this operator must be calcula
using eigenstates which are not perturbed by the nuc
magnetic moment interaction, Eq.~35!, a requirement which
is satisfied by our Dirac-Hartree-Fock wave functions. A
suming that the center of mass of the molecule in which t
nucleus is to be found is at rest, one may make the repla
ments

p52(
j

pj , ~42!

B5(
j

Bj , ~43!

Bj5S r3a

r 3 D
j

. ~44!

Employing the identity

~s•X!~s•Y!5X•Y1 i s•~X3Y!, ~45!

and dropping terms independent ofs, since they are not
observable in the spin-resonance experiment which is
subject of this theoretical investigation, we find that

HM5dpS 1

2MNc
1

gN

2ZmpcD(
j

sN–H p3S r3a

r 3 D
2S r3a

r 3 D 3pJ
j

. ~46!

By using a result presented in Appendix B, Hinds and S
dars showed@19# that the total magnetic interaction energ
EM , resulting from the combined effect ofHM

1 andHM
2 , may

be written in the form
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EM5^HM
1 1HM

2 &

52dpS 1

2MNc
1

gN

2ZmpcD
3^CRusN–luCR&(

j
^c j uS a3 l

r 3 D
j

uc j&l , ~47!

yielding an effective magnetic coupling constantdM of

dM522dpS 1

2MNc
1

gN

2ZmpcD(
j

^c j uS a3 l

r 3 D
j

uc j&l ,

~48!

when we compare with the effective interaction in Eq.~1!.

C. Weak-neutral current effect

Following Hinds, Loving, and Sandars@18# we write the
most general nonderivative short-range parity-violating int
action between a nucleon and an electron on the form

Ĥen5(
k

Ĥk5(
k

iCk~ c̄nGkcn!~ c̄eGkg5ce!, ~49!

whereCk is a coupling constant depending on the nature
the interaction,cn here represents an electron-positron fie
operator, andc̄n5cn

†g0. The indexk labels all vector (V),
axial (A), scalar (S), pseudoscalar (P), and tensor (T) com-
binationsGk of the Dirac matrices$gm%. The combinations
kP$V,A% are theP-odd interactions of the standard mod
of electroweak theory@14#, and give rise to optical rotation
in atomic metal vapors and transitions between states of
posite nominal parity. These phenomena are now well es
lished by experiments whose precision has been refined
25 years of continuous effort.

The combinationskP$S,P,T% yield PT-odd interactions
which may induce effects characteristic of an EDM in ato
and molecules. If the odd-parity part of the interaction
restricted to electronic coordinates and the nuclear coo
nates are treated nonrelativistically, the pseudoscalar inte
tion ĤP is eliminated. On symmetry grounds, the remaini
scalar and tensor effective interactionsĤS and ĤT , respec-
tively, assume the forms

ĤS52
dS

J
J•E, ~50!

ĤT52
dT

I
I•E, ~51!

whereJ is the total electronic angular momentum,MJ is the
projection ofJ along the internuclear axis,I is the nuclear
spin,E is the external electric field, and the dipole coupli
constantsdS anddT are proportional toCS andCT , respec-
tively. An experiment to determineCS requires an atom o
molecule withJÞ0, while an experiment to determineCT
requires a nonzero nuclear spinIÞ0. For a closed-shell mol
ecule such as TlF,MJ50, so that̂ J•E&50, and there is no
first-order contribution involvingonly the scalar interaction
-

f

p-
b-
by

s

i-
c-

There is a nonvanishing first-order tensor interaction, ho
ever, becauseI 5 1

2 for 205Tl and 19F. If we assume that al
second-order effects are smaller than those caused by
order interactions, these selection rules enable experime
discrimination between the scalar and tensor electron-pro
coupling constants. Since the tensor interaction is spin
pendent in the shell model, the tensor coupling constantCT
derived from the TlF experiment contains only contributio
from the unpaired proton. Evaluating the matrix element
ĤT in the TlF state function,C, leads to an operator of th
form Eq. ~1! with a tensor coupling constantdT defined by
@21#

dT5A2iCT(
j

^c j u%p~r j !~g0a! j ,luc j&, ~52!

where %p(r j ) is the density of the unpaired proton in th
205Tl nucleus at the electronic coordinater j . Flambaum,
Khriplovich, and Sushkov@25# showed that bounds onCS
also may be obtained from the TlF experiments, and t
effect is considered briefly in Sec. VI D.

D. Schiff moment effect

Even if the nucleons do not possess an EDM, the nucl
may have a characteristic EDM due to a nonspherical cha
distribution caused byPT-odd nucleon-nucleon interaction
as shown by Coveney and Sandars@21#. The nuclear EDM
dN is written as a classical collection of point charges

dN5(
n

qnrn , ~53!

where the summation is over nucleons whose charge isqn
and whose position isrn . The interaction energyW of this
charge distribution with the electric field due to the electro
and the electric field atrN due to the electronic charge dis
tribution E(rn), are given by

W5(
n

qnVe~rn!, ~54!

E~rn!52“eVe~rn!, ~55!

whereVe(rn) is the electrostatic potential atrn . Following
Coveney and Sandars@21#, Ve(rn) is expanded as a Taylo
series about the center of mass of the nucleusrN , yielding
the expansion for the interaction energy

W5ZVe~rn!1(
n

qn~rn–“e!Ve~rn!urn5rN

1 1
2 (

n
qn~rn–“e!

2Ve~rn!urn5rN

1 1
6 (

n
qn~rn–“e!

3Ve~rn!urn5rN
1•••. ~56!

At equilibrium, the force on the nucleus,FN52^“NW&,
vanishes. Setting2^“NW&5^“eW&50, it may be shown
that
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“eVe~rN!52
1

6Z(
n

qnr n
2
“e@¹e

2Ve~rn!#urn5rN
. ~57!

This condition, which is valid if the system is in electrosta
equilibrium, is substituted into Eq.~56!, yielding the effec-
tive perturbation

ĤN5
1

6S 3

5(n
qnrnr n

22
1

Z(
n,n8

qnqn8rnr n8
2 D“e@¹e

2Ve~rN!#.

~58!

Taking the expectation value ofĤN in the state functionC
leads to the effective operator

Ĥeff
Q 52dQsN–l, ~59!

where@21#

dQ526QX ~60!

Q5
1

6F3

5
^CNu(

n
qnrnuCN&21/Z^CNu(

n
qnr n

2uCN&

3^CNu(
n

qnrn /r n
2uCN&G

l

. ~61!

The electronic integralX is defined by the volume effec
parameter Eq.~22!, andQ is the nuclear Schiff moment in
troduced in Refs.@25# and @31#.

III. RELATIVISTIC ELECTRONIC STRUCTURE THEORY

The derivation of the coupled linear equations used inab
initio relativistic finite basis set calculations has over t
years been presented by a number of authors, for exam
Refs.@32,33#, based on the early work of Refs.@34,35#. Here
we review that development only to the extent that is nec
sary for the introduction of expressions and quantities wh
are essential for the discussions and derivations pertai
directly to the PT-odd effects studied by us. As most o
these interactions involve the nuclear region, we discus
particular the use of nuclear models of finite size as wel
the solution of the Dirac-Hartree-Fock equations close to
nuclei.

A. Dirac-Hartree-Fock equations

For an external electromagnetic field consisting only o
time-independent scalar potentialV(r)52ef(r), the time-
independent Dirac equation takes the form@32#

$ca•p1bmc21V~r!%ck~r!5Ekck~r!. ~62!

Here ck(r) are four-component functions of position, fou
spinors, with eigenvaluesEk . The 434 matricesa and b
are given by

aq5F 0 sq

sq 0G , b5F I 0

0 2I G , ~63!

whereq5$x,y,z%, sq are the Pauli spin matrices, andI is
the 232 unit matrix.
le,

s-
h
ng
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e
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The solution of equations of this type forms the comp
tational basis of the relativistic electronic structure theory
atoms and molecules. These solutions are classified as b
of ‘‘positive-energy’’ type for Ek.0, and ‘‘negative-
energy’’ type forEk,0. For attractive potentialsV(r),0 of
the type which most commonly occurs in electronic struct
theory, the positive-energy solutions are further classified
square-integrable bound states if2mc2,Ek,mc2. All
other solutions belong to a continuum of states represen
scattering in the external field. The problem of interpreti
and handling negative-energy solutions has been descr
previously@32#, and will not be pursued further here.

The Dirac equation is a single-particle equation, and
generalization of this equation to the many-particle case
not as straightforward as is the case in nonrelativistic theo
As a first step, the electronic Hamiltonian forNocc particles
may be written as a sum of Dirac operators for the individ
particles

ĥD~r i !5c~a•p! i1bmc21V~r i !. ~64!

If the particles are assumed to interact through the Coulo
interaction, we obtain the Dirac-Coulomb operator

ĤDC5(
i 51

Nocc

ĥD~r i !1
1

2(
iÞ j

Nocc 1

ur i2r j u
. ~65!

The interpretation of this operator requires special care
cause of the presence of the negative-energy states
second-quantized theory may be developed@32# which im-
poses the condition that these negative-energy states ar
accessible under the circumstances prevailing in a molec
environment, leading to a computational scheme wh
closely resembles the practices encountered in nonrelativ
quantum chemistry. The total electronic energy within th
theory is

E5(
i 51

Nocc

~ i uĥDu i !1 1
2 (

i , j 51

Nocc

@~ i i uĝu j j !2~ i j uĝu j i !#. ~66!

Here Mulliken notation is used for the electron repulsi
integrals, where

~ i j uĝukl !5E E c i
†~r1!c j~r1!

1

ur12r2u
ck

†~r2!c l~r2!dr1dr2 ,

~67!

and c i
†(r) is the Hermitian transpose of the four spino

c i(r). For later convenience, we define

ck~r!5Fck
L~r!

ck
S~r! G , ~68!

whereck
L(r) andck

S(r) are two-spinor functions comprising
respectively, what is commonly denoted the ‘‘large comp
nents’’ and ‘‘small components’’ ofck(r). Here we neglect
contributions from the Breit interaction, which is the lowes
order relativistic correction to the Coulomb interaction b
tween electrons. It is assumed that this approximation m
be invoked without introducing significant errors in our fin
calculations, because the properties in which we are in
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ested depend mainly on valence electron amplitudes and
these will not be very sensitive to the magnetic and retar
tion effects described by the Breit interaction. We kno
from our calculations on atoms@36# that the self-consisten
treatment of the Breit interaction contributes only a slow
varying effective potential, and we shall see in later secti
that such a potential is unlikely to have a substantial eff
on the numerical values of thePT-odd parameters which w
calculate. In calculations ofPT-odd effects in atoms, the
authors of Ref.@29# showed that the Breit interaction con
tributes only a few percent to electron EDM parameters
Tl, and we assess the sensitivity of our molecular calcu
tions to be of a similar magnitude. Recently, the calculat
of magnetic and retardation effects has been described
implemented in molecular electronic structure calculatio
@37#. The evaluation of matrix elements of the Breit intera
tion are intrinsically more expensive than those of the C
lomb interaction, and there is almost no experience of lar
scale basis set calculations of the Breit interactions
molecules. However, the technology for such calculatio
now exists, and a detailed study of the effect of the Br
interaction in molecular structure calculations is planned a
development for the future.

If the energy of an electron at rest is defined to bec2

atomic units, the matrix representationH of the Dirac opera-
tor ĥD for an electron moving in the external field ofNnuc
nuclei is

H5FHLL HLS

HSL HSSG . ~69!

Introducing the labels$m,n% to denote the functions within
the large- and small-component basis sets, the matrix
ments of the blocks ofH are defined by

Hmn
LL5Vmn

LL1c2Smn
LL , ~70!

Hmn
SS5Vmn

SS2c2Smn
SS , ~71!

Hmn
LS5cPmn

LS , ~72!

Hmn
SL5cPmn

SL , ~73!

where

Vmn
TT5S cm

TU(
n51

Nnuc

Vn~r!Ucn
TD , ~74!

Smn
TT5~cm

T ucn
T!, ~75!

PTT̄5~cm
T us•pucn

T̄!. ~76!

The elements of the blocksSTT̄, VTT̄, andPTT are zero val-
ued,T5L or T5S, and T̄ÞT. The density matrixD is con-
structed in the block form

D5FDLL DLS

DSL DSSG where Dmn
TT85(

i 51

Nocc

cm i
T* cn i

T8 . ~77!
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Similarly, block matricesGTT8, which compriseG, the ma-
trix representation of the mean-field potential, may be eva
ated. For explicit expressions see Ref.@33#. The components
of the four-spinors may be expanded in a scalar basis
@38#, or directly in a two-spinor basis set@39#; these ap-
proaches are equivalent, provided that therestrictedkinetic
balance prescription~e.g., Ref.@40#! is adopted.

In these calculations, therestricted kinetic balance pre-
scription@40# is enforced, in which the small-component b
sis set is generated by the action of the operator (s•p) on the
large-component basis. This prescription removes the va
tional collapse problems that plagued early four-compon
calculations and guarantees that finite-dimensional repre
tations of Dirac spinors tend toward exact representation
the limit of a complete set. For finite dimensions there is
ambiguity in the identity of individual members of the Dira
spectrum, and consequently there is a strict separation o
spectrum into its positive- and negative-energy branch
Stanton and Havriliak@41# demonstrate that solutions of th
Dirac equation obtained in this way do not providerigorous
upper bounds to exact eigenvalues for a given potential,
it is our experience that the behavior is quasivariational
finite nuclear model is adopted and uncontracted sets
Gaussian basis functions are used. The observed con
gence behavior closely resembles that observed in non
tivistic quantum chemistry as the dimension of the basis
is increased.

From these matrix expressions, the Dirac-Hartree-F
approximation is obtained by replacing nonrelativistic Sch¨-
dinger operators by one-electron Dirac operators and c
structing mean-fields from occupied positive-energy am
tudes. The Fock matrixF is then defined as

F5H1G. ~78!

In this matrix representation, the Dirac-Hartree-Fock a
proximation involves the solution of the generalized mat
eigenvalue equation

FC5eSC ~79!

for the diagonal matrixe, which contains the eigenvalue
and forC, the matrix of spinor expansion coefficients. Sin
F depends onD, whose elements are constructed from t
expansion coefficients of positive-energy four-spinors c
tained inC, the Dirac-Hartree-Fock procedure involves t
self-consistent solution of these coupled equations for
orbital energies and for the expansion coefficients of
spinors.

B. Finite nuclear effects

The nuclear point charge model, which is widely em
ployed in nonrelativistic quantum chemistry, is not approp
ate in systems involving heavy elements. Fortunately,
electronic properties of such systems are not strongly dep
dent on the details of the model which is adopted to repres
the finite extent of the nuclear charge distribution. The si
plest of these models is the uniform nuclear charge distri
tion, which represents the nucleus as a solid homogene
sphere of charge. A more detailed model, the Fermi distri
tion, includes parameters derived from experiment, and
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widely used in relativistic atomic structure calculations. T
most important nuclear parameter in electronic structure
culations is, however, the mean-square radius of the ch
distribution, for which an empirical formula is availab
which depends only on the nuclear mass. In order to fac
tate the evaluation of multicenter nuclear attraction integ
over our chosen electronic basis set, we adopt a Gaus
nuclear charge distribution whose mean-square ra
matches the empirical data.

A normalized spherically-symmetric Gaussian charge d
tribution centered atP may be written in the form

%~rP!5%~r P ,uP ,wP!

54lAl

p
exp~2lr P

2 !Y0*
0~uP ,wP!Y0

0~uP ,wP!

~80!

5S l

p D 3/2

exp~2lr P
2 !, ~81!

where (r P ,uP ,wP) is a spherical polar coordinate syste
whose origin is atP, andl is a positive constant which ma
be chosen so that the distribution reflects empirical ro
mean-square values of particular nuclear radii. The param
ric form for l which was used in this study is

l51.5031010S 0.529 177 249

0.836A1/310.57
D 2

, ~82!

where A is the nuclear mass number. The functional fo
given here, which includes the overlap distribution of no
malized spherical harmonic functions, emphasizes the p
matic choice of a Gaussian distribution as a model for
nucleus. Nuclear attraction integrals are, in this formulati
simply special cases of the more numerous electr
repulsion integrals which form the bulk of the computation
effort in Dirac-Hartree-Fock calculations. In practice, t
choice of a primitive Gaussian nuclear distribution is a go
one, and may be refined by the inclusion of more functio
or of higher multipoles, if required.

From elementary electrostatics we may obtain the cen
field potential,V(r P), due to%(rP) for a nuclear chargeZ
from the relation

V~r P!52ZE
0

2p

dfE
0

p

sin~u!du Y0*
0~uP ,wP!Y0

0~uP ,wP!

3H 1

r P
E

0

r P
s2%~s!ds1E

r P

`

s%~s!dsJ
52ZH 1

r P
E

0

r P
s2%~s!ds1E

r P

`

s%~s!dsJ . ~83!

After a little rearrangement, and dropping the subscript or
for convenience, we write the radial potential due to a Gau
ian nucleus in the form

V~r !52ZH E
0

`

s%~s!ds1
1

r E0

r

s2%~s!ds2E
0

r

s%~s!dsJ
l-
ge

i-
ls
ian
s

-

t-
t-

-
g-
e
,
-

l

d
,

al

s-

5V01V1r 1V2r 21•••, ~84!

where

V052ZE
0

`

s%~s!ds, ~85!

and the higher-order coefficients may be obtained simply
expanding%(s) and expanding term by term. We find th
the explicit forms of these coefficients are

V0522ZAl

p
, ~86!

V150, ~87!

V252
pV0

3

12Z2
. ~88!

The effect in which we are interested is strongly localiz
over the volume of the205Tl nucleus, so we may safely ne
glect all contributions to the potential from the electron
screening, since these add a positive constant toV0 whose
magnitude is much smaller than that of the bare nucl
value. In our calculations, we have used the valuel
51.388 892 520 33108 for 205Tl, which corresponds to a
root-mean-square radius of 1.039231024 a.u., and yields
V0521.07713106 a.u.

C. Solution of the Dirac equation for small r

In order to analyze the numerical behavior of thePT-odd
interaction parameters, we need to know the form of
radial and angular parts of the solutions of the single-part
Dirac equation in the region of a heavy Gaussian nucle
The electrostatic potential may be written in the form E
~84! and the radial form of the Dirac equation for the lar
and small componentsP(r ) andQ(r ) is

F c21V~r !2E cS 2
d

dr
1

k

r D
cS d

dr
1

k

r D 2c21V~r !2E
G F P~r !

Q~r !
G50. ~89!

These radial solutions may be formed into atomic fo
spinorsc i(r), according to

c i~r!5
1

r F Pi~r !xk,m~u,w!

iQi~r !x2k,m~u,w!
G , ~90!

in which xk,m(u,w) and x2k,m(u,w) are spin-angular two-
spinors deduced from the more general functionsx jma(u,w),
where

x jm,21~u,w!5F 2S j 112m

2 j 12 D 1/2

Yj 11/2
m21/2~u,w!

S j 111m

2 j 12 D 1/2

Yj 11/2
m11/2~u,w!

G , ~91!
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x jm,1~u,w!5F S j 1m

2 j D 1/2

Yj 21/2
m21/2~u,w!

S j 2m

2 j D 1/2

Yj 21/2
m11/2~u,w!

G , ~92!

anda52sgn(k). The functionsYn
m(u,w) are spherical har-

monic functions defined consistent with the conventions
Condon and Shortley@42#. These two-spinors are eigenfun
tions of j2 with eigenvaluej ( j 11)\2, the projection ofj in
the z direction with eigenvaluem\, and of the operatorK,
where

K5FK8 0

0 2K8
G , ~93!

K852(2s• l11), s and l are the usual spin and orbital an
gular momentum operators, andKc i(r)5k ic i(r). The al-
lowed values ofk arekP$61,62, . . .% and are associate
with total angular momentumj , given by j 5(2uku21)/2. In
particular,k521 corresponds to as1/2 state,k51 to ap1/2
state, andk522 to ap3/2 state. Them values are restricted
to the half-integer values2 j <m< j .

Spherical spinors of this form satisfy the identity

s•pFF~r !

r
xk,m~u,w!G5

i

r FdF~r !

dr
1

kF~r !

r Gx2k,m~u,w!.

~94!

Expanding the functionsP(r ) andQ(r ) as power series inr
and classifying the solutions byk,0 andk.0, we obtain
solutions whose characteristic features are summarized
low.

Case I:k,0

P~r !.r l 11@p01p2r 2#

Q~r !.r l 12@q01q2r 2#

p0 /q05
~2l 13!c

V01c22E

p15q150.

~95!

Case II:k.0

P~r !.r l 11@p01p2r 2#

Q~r !.r l@q01q2r 2#

p0 /q052
~V02c22E!

~2l 11!c

p15q150.

~96!

Note that in either case,p0 is a constant which is determine
by the spinor normalization condition, and that the ra
p0 /q0 is, to a first approximation, independent of the boun
state eigenvalue. SettingE5mc2 in the formulas above we
obtain the approximate values (p0 /q0)21.22620.1 fors1/2
spinors with k521, and (q0 /p0)11.2711.5 for p1/2
spinors withk511.
f

e-

-

IV. NUMERICAL EVALUATION OF PT-ODD
ELECTRONIC PARAMETERS

A. Volume effect

The purpose of this section is to illustrate the origin of t
most serious of our numerical problems in calculati
PT-odd interaction parameters. By examining the analy
behavior of the molecular spinors in the neighborhood of
205Tl nucleus, we will find that one term in particular in
volves a numerical cancellation of contributions which m
be reproduced accurately only if the atomic components
each spinor satisfy the analytic results for thep0 /q0 ratios
derived in Sec. III C.

The electronic structure factorX in Eqs.~25! and ~60! is
evaluated as the sum of single-particle contributionsXj ac-
cording to the definitions

X5(
j 51

Nocc

Xj , ~97!

Xj5
2p

3
@“~c j

†~0!c j~0!!#l . ~98!

In practice, theXj coefficients are calculateddirectly from
the relation

Xj5 lim
r n→0

1

r n
2F E0

2p

dw jE
0

p

sinu jdu j

3E
0

r n
r j

2dr jc j
†~r j !

cosu j

r j
2

c j~r j !G . ~99!

In the limit r n→0, this involves only the numerical values o
the four-spinor amplitudes atr 50, which are readily de-
duced from the basis set expansion coefficients of the fo
spinors, and angular factors which are determined ana
cally. The angular selection rules eliminate all contributio
except from spinors of symmetry typev5 1

2. Contributions
to Xj from F-centered basis functions are negligible beca
the gradient of the electron density at the Tl nucleus is do
nated by distortions in the Tl-centered atomic functio
caused by molecular bond formation. All matrix elemen
involving F-centered basis function contributions are e
cluded in our calculations ofX.

In order to analyze the numerical problems involved
the evaluation ofX using our numerical techniques, it prove
to be convenient to write each spinor as aformal one-center
expansion of the form

c j~r!5u21,m& j1u11,m& j1u22,m& j1•••, ~100!

in which all explicit detail about the functional form of th
expansion functions other than their symmetry propertie
suppressed. The functionsuk,m& j are atomic four-componen
spinors which satisfy the mean-field Dirac equation in t
neighborhood of the Tl nucleus with molecular eigenva
Ej , whose amplitudes are determined by the molecular
culation. For any diatomic molecule, we may select a rep
sentation for the degenerate Kramers pair of states belon
to a given molecular symmetry classification,v, such that
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the atomic symmetry types allowed in Eq.~100! are deter-
mined by a single value of the quantum number,m56v,
which is the projection of the total electronic angular m
mentum ofc j (r) in the directionl. These functions are de
fined with respect to a spherical polar coordinate system c
tered at the Tl nucleus, and take the form

uk,m& j5
1

r F Pj
k,umu~r !xk,m~u,w!

iQ j
k,umu~r !x2k,m~u,w!

G . ~101!

The radial functionsPj
k,umu(r ) and Qj

k,umu(r ) defined in Eq.
~101! differ from the atomic solutions of the Dirac equatio
for spherically symmetric potentials defined in Eq.~90!,
since they depend onumu but are independent of the sign o
m, for fixed k. In principle, these functions may be obtain
from the molecular spinors by projecting out all Tl-center
basis set components whose angular classification is (k,m)
from the single-particle molecular four-spinor,c j , although
we emphasize that we have no need to do this in prac
Atomic Tl-centered basis functions corresponding to symm
try types k5$21,11,22% are the only ones which mak
any contribution toX, and all others are therefore exclude
in the formal expansion in Eq.~100! for the sake of clarity.

The explicit forms of the Tl-centered atomic four-spino
for m5 1

2 and smallr are

u21,1
2 &5F p0

21Y0
0

0

2 iA1
3 q0

21rY1
0

iA2
3 q0

21rY1
1

G ,

u11,1
2 &5F 2A1

3 p0
11rY1

0

A 2
3 p0

11rY1
1

iq0
11Y0

0

0

G ,

u22,1
2 &5F A2

3 p0
22rY1

0

A 1
3 p0

22rY1
1

2 iA2
5 q0

22r 2Y2
0

iA3
5 q0

22r 2Y2
1

G , ~102!

where the state labelj has been suppressed. The ratio
coefficientsp0

k/q0
k may be deduced from Eqs.~95! and~96!,

and the value of eitherp0
k or q0

k may be deduced from th
molecular amplitudes atr 50. It is sufficient to consider only
the m51 1

2 spinors, since contributions toX from m52 1
2

spinors are identical in value on symmetry grounds.
The most critical contribution in the evaluation ofXj in-

volves the atomic matrix element

Xj
21,15 lim

r n→0

1

r n
2 ^21,1

2 u
cosu

r 2
u11,1

2 & j , ~103!
-

n-

e.
-

f

in which the upper limit of radial integration is restricted b
Eq. ~99! to be r n . Inserting the explicit form of the spinor
into this matrix element, and multiplying by a factor of 2 fo
the contribution toXj from its Hermitian conjugateXj

1,21 ,
the contribution toX is

Xj
21,152 1

3 @p0
21p0

111q0
21q0

11# j . ~104!

A similar treatment of the spinor contributions toX involv-
ing the atomic symmetry typesk521 and22, denoted by
Xj

21,22 , leads to the computational form

Xj
21,225

A2

3
@p0

21p0
22# j , ~105!

in which ther 2 dependence of the small-component amp
tudes fork522 eliminates all terms depending onq0

21 and
q0

22. All other combinations of symmetry type yield vanish
ing contributions toX.

For the 205Tl nucleus,V0.213106, and we may make
the bound-state approximationE.c2, resulting in the re-
placements

~V01c22E!.V0 , ~106!

~V02c22E!.V022c2. ~107!

Substituting these values into the relations connectingp0
k

with q0
k , Eqs.~95! and ~96!, we find that

Xj
21,152

1

3
@p0

21p0
11# jF12

V0

V022c2G . ~108!

Since uV0u@2c2, we expand the difference in the secon
bracket to find that

Xj
21,15

1

3
@p0

21p0
11# j

c2

V0
. ~109!

The fact that we are able formally to expand Eq.~108! indi-
cates that the direct evaluation ofXj

21,1 must involve a strong
numerical cancellation of large- and small-component c
tributions. ForV0.21.07713106 a.u. the cancellation o
large- and small-component contributions involves two
ders of magnitude, and can be achieved accurately on
our molecular four-spinors possess the correct (p0 /q0)k val-
ues fork5$21,1%. In the nonrelativistic limit, only thep0

k

values are involved in the calculation ofX, and we may
expect improved numerical stability of its numerical dete
mination with respect to variations in the basis set.
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B. Magnetic effect

In the calculation of the magnetic coupling constant,dM,
we define the intermediate computational quantitiesM and
M j , where

dM522A2dpS 1

2MNc
1

gN

2ZmpcD M , ~110!

M5(
j 51

Nocc

M j , ~111!

M j5
1

A2
^c j uS a3 l

r 3 D
j

uc j&l . ~112!

The one-electron operator involved in the evaluation
M j may be written in the explicit matrix form

1

A2

~a3 l!z

r 3
5

1

A2

i

r 3S 0 0 0 l 2

0 0 2 l 1 0

0 l 2 0 0

2 l 1 0 0 0

D , ~113!

where we have assumed implicitly thatl is aligned parallel
to the positivez axis. The angular momentum step operat
have the usual definitionsl 65 l x6 i l y .

Matrix elements of the electronic operator defined by E
~113! are evaluated as linear combinations of primiti
Gaussian basis function integrals, using the property pack
of the HERMIT module in theDALTON program @43#. The
numerical algorithms employed in that program are
scribed by Saunders@44# and Helgaker and Taylor@45#. It
was convenient to include exactly both one- and two-cen
contributions to the magnetic effect, so we have made no
of the reduction of Ref.@19# into one-center radial and an
gular parts.

C. Weak neutral current effect

The weak neutral current interaction coupling constantdT

may be related to the computational intermediatesT andTj
by

dT52A2CTT, ~114!

T5(
j 51

Nocc

Tj , ~115!

Tj52 i ^c j u%p~r j !~g0a! j ,luc j&, ~116!

where the component of the matrix operatorg0a in the di-
rection ofl has the explicit form

g0az5S 0 0 1 0

0 0 0 21

21 0 0 0

0 1 0 0

D . ~117!
f

s

.

ge

-

er
se

Like the magnetic effect, the matrix elements of this mat
operator are reduced to primitive integrals involving the s
lar basis functions which constitute the individual comp
nents of the spinors. Since the function%p(r) is localized at
the 205Tl nucleus, only one-center Gaussian basis funct
integrals are required, which were evaluated by elemen
means. The evaluation was further facilitated by the use
an explicit 434 matrix representation of the effective on
electron operator in our numerical procedures, which ensu
the correct coupling of components.

V. ATOMIC BASIS SET CONSTRUCTION

In the series of calculations reported here on the e
tronic structure of TlF, it was necessary to reconcile confli
ing computational features of the relativistic self-consiste
field method. The main computational burden involved in t
determination of the electronic structure of any molecule
weighted heavily toward the construction of the subvalen
and valence orbitals which hold the molecule together, a
not toward the core orbitals which contribute, to a good a
proximation, effective local potentials in which the valen
electrons move. The values of thePT-odd parameters, how
ever, depend almost wholly on amplitudes in the core reg
and on contributions to molecular four-spinors froms- and
p-type scalar Gaussian basis functions with exponent va
larger than 105. Since our calculations are based on the line
variation principle, these functions make a relatively min
contribution to the total electronic energy of the system.

The usual dependence on the Undheim-Hyllera
Macdonald theorem@46#, which plays a pivotal role in non-
relativistic quantum chemistry, is not appropriate in the re
tivistic case, particularly if we are mainly interested in th
electronic amplitudes near a heavy nucleus. For any ato
Gaussian basis set of finite dimension which is generated
nonlinear optimization of the energy with respect to the e
ponent set, the parameters derived by this procedure ge
ally provide poor representations of the four-spinor amp
tudes in the neighborhood of heavy nuclei. From
fundamental point of view, any finite basis set approximat
of the bound-state eigenvalues of the Dirac equation need
be a strict upper bound to the exact values inany choice of
basis@41#. This presents no problem of principle or practic
the calculations are variational in the sense that we see
stationary point in the energy functional for a given basis s
and not an absolute minimum. We rely on the formal co
pleteness of the basis in a given limit to justify the validity
the approximation scheme.

Since the Undheim-Hylleraas-Macdonald theorem is no
reliable guide to the construction of relativistic basis s
which are suitable for the calculation of thePT-odd elec-
tronic parameters, we devised a numerical test which p
vides a more sensitive measure of the quality of the spin
in the region of the Tl nucleus. In this region, the behavior
any molecular spinor is dominated by the local potential d
to the nucleus, and we may apply the results of Eqs.~95! and
~96! to the atomic components of each spinor. Since the e
trostatic potential is spherically symmetric for small di
placements from the center of mass of the Tl nucleus, i
simple to determine the ratio (p0 /q0) defined by Eqs.~95!
and ~96! for each Tl-centered atomic symmetry type whi
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57 933AB INITIO DIRAC-HARTREE-FOCK CALCULATIONS . . .
contributes to a given four-spinor. In order to construct
basis which gives orbital eigenvalues of chemical quali
and which gives good representations of atomic spinors
the neighborhood of the nucleus, we constructed sets
Gaussian basis set exponents from carefully chosen geom
ric sequences.

Our preliminary tests concern the single-particle solutio
for Tl 801, in which the nucleus is modeled as a Gaussi
charge distribution, and for which we derived analytic resu
in Sec. III C for the spinor amplitudes near the nucleus. T
same basis set exponents$l i% were used for thek521 and
1 symmetry types, and are defined by the even-tempe
prescription

l i5abN
i 21 wherei 51,2, . . . ,N ~118!

for a radial basis of dimensionN. The parametersa50.04
andabN

N2155.03108 for all the basis sets, and this range o
functions is sufficient to ensure that we have a number
functions which are able to represent the spinors in t
nuclear region, while retaining flexibility in the valence ba
sis. The finite difference results fromGRASP @47# are re-
garded as a numerical standard and are assumed to defin
Dirac-Hartree-Fock limit for this system. From thes
calculations we find the energies23620.447 145 and
2930.962 616 a.u. for the 1s1/2 and 2p1/2 spinors, respec-
tively. Inserting these values for the energies into Eqs.~95!
and ~96!, we obtain the (p0 /q0)k Dirac-Hartree-Fock limit
values, (q0 /p0)21522611.28 and (p0 /q0)1152709.20 for
these two single-particle spinors. In Figs. 2 and 3 we disp
the convergence of (q0 /p0)21 and (p0 /q0)11 as the dimen-
sionN of the radial basis set, defined in Table I, is increase
It is very clear for bothk521 and11 that the convergence
is smooth, and that the ratios of the leading-order pow
series coefficients tend toward the exact values dictated
Eqs.~95! and ~96!.

In the construction of basis sets for molecular calcul
tions, we are restricted in the maximum radial dimension th
we may use by practical considerations of the number
two-electron integrals which arise, which scales as the fou

FIG. 2. The convergence of (q0 /p0) with basis-set size for the
1s1/2 spinor of Tl801. The number of basis functionsN in the even-
tempered basis sets refers to Table I. The analytic value is ca
lated from Eq.~95!.
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power of the number of basis functions. We conducted
series of numerical tests on basis sets for atomic thalliu
both using energy-optimized basis sets, and larger sets
erated by systematic sequences of even-tempered funct
In the case of the even-tempered sets, the exponents fo
symmetry types were selected from a single master list g
erated and labeled by the even-tempered prescription,
~118!. These basis sets are defined by the parameters
played in Table II.

For comparison, an energy-optimized dual-family ba
set was also used. In relativistic energy optimizations of
sis set exponents@48#, the relativistic contraction of electron
density tends to favor the inclusion of basis functions w
exponent values in the intermediate region at the expens
those with small values which represent the valence reg
and those with very high values representing the nuclear
gion. We replaced the four outers (p) exponents of the
energy-optimized basis set with a short sequence of
~seven! even-tempered exponents, in order to represent m
accurately the valence region and polarization of the thalli
atom. This basis set, labeled Tl-erg, is presented in Table

The even-tempered sets defined in Table II and the
tended, energy-optimized basis set defined in Table III are
similar quality, if judged by the usual quantum-chemic
yardstick of the total electronic energy. The basis sets Tl-
and Tl-4 give total energies 10.831023 and 11.931023 a.u.,
respectively, above the Dirac-Hartree-Fock limit, which
220 274.850 644 28 a.u. In Table IV, we present orbital

TABLE I. Even-tempered basis sets withN exponents defined
by l i5abN

i 21 , wherei 51,2, . . . ,N. In order to give a comparable
description of both the core and valence regiona50.04 and
abN

N2155.03108 for all the sets.

N bN N bN N bN

17 3.926 25 2.534 33 2.023
19 3.400 27 2.366 35 1.943
21 3.026 29 2.229 37 1.875
23 2.748 31 2.117 39 1.815

u-

FIG. 3. The convergence of (p0 /q0) with basis-set size for the
2p1/2 spinor of Tl801. The number of basis functionsN in the
even-tempered basis sets refers to Table I. The analytic valu
calculated from Eq.~96!.
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934 57QUINEY, LAERDAHL, FÆGRI, AND SAUE
genvalues, and the ratios (q0 /p0)21 and (p0 /q0)11, ob-
tained using basis sets Tl-4 and Tl-erg, and compare th
with the numerical values obtained using the finite differen
programGRASP @47#.

In all cases, the orbital eigenvalues obtained using b
sets Tl-erg and Tl-4 are in good agreement with the fin
difference results. For spinors ofk521 symmetry, both ba-
sis set calculations generate values of (q0/p0)21 which are
in satisfactory agreement with the finite difference valu
with basis set Tl-4 proving to have a slighter superior p
formance. However, for the symmetry-typek511, the
(p0 /q0)11 values obtained using basis set Tl-erg are who
unsatisfactory. This deficiency indicates that thep-type func-
tions in this basis set include insufficiently large exponents
describe the contraction of small-component electron den
in p1/2 four-spinors. The basis set labeled Tl-4 does not s
fer from this deficiency, because it contains several ev
tempered functions whose exponents are sufficiently larg
represent the structure of the spinors in the nuclear reg
From the analytic solutions of Dirac spinors for small d
placements from center of mass of the nucleus, it is clear
a small number of Gaussian-type functions is sufficient
represent atomic four-spinors in this region, provided that
exponent values are chosen to be sufficiently large that
are able to represent functional behavior dictated by the
few power-series coefficients. Clearly, the even-tempered
Tl-4, has sufficient flexibility to be able to representuku51
atomic spinors in this region, while the energy-optimiz
basis, Tl-erg does not. At the same time, we must includ
sufficient number of diffuse basis functions so that our r
resentation of the chemistry of Tl is not sacrificed when
come to describe the bonding of TlF. Clearly, in man
electron systems where the valence spinors have se
nodes and very small amplitudes near the nucleus, cons
tion of a basis set which is suitable for the calculation
PT-odd effects is particularly difficult. Nevertheless, we fin
that our calculatedp0 /q0 ratios do converge with basis s
size, and the largest basis set we have used, Tl-4, is clo
convergence. For these reasons, we will use the large e
tempered basis sets in the subsequent investigations o
structure of TlF.

The electronic structure in the vicinity of the fluorin
nucleus is essentially nonrelativistic. For this reason we h
adopted a nonrelativistic 9s6p basis set centered at the flu
rine nucleus, augmented by twod-type functions to accom

TABLE II. Even-tempered basis sets for the thallium atom us
in this study. The notation$n1,l :n2,l% denotes the first and last in
dices, respectively, of the basis sets for each atomicl value, with
respect to the master list ofN exponents defined by Eq.~118!. In
order to give a good description of both the valence and nuc
region the value ofaN is fixed at aN50.02 andabN

N2155.0
3108, for all N.

Basis bN $Nkl k% $n1,l :n2,l%

Tl-1 2.606 25s25p12d8 f ~1:25,2:26,13:24,15:22!
Tl-2 2.352 28s28p14d8 f ~1:28,2:29,14:27,17:24!
Tl-3a 2.165 31s31p15d8 f ~1:31,2:32,16:30,19:26!
Tl-3b 2.165 31s31p15d8 f 3g ~1:31,2:32,16:30,19:26,23:25!

Tl-4 2.022 34s34p16d9 f ~1:34,2:35,17:32,21:29!
m
e

is
e

,
-

y

o
ty
f-
n-
to
n.

at
o
e
ey
st
et

a
-

e
-
ral
c-

f

to
n-

the

e

modate the polarization of the atomic fluorine shells by
formation of molecular orbitals. The basis set have been
timized for the negative fluorine ion@49#.

VI. RESULTS AND DISCUSSION

A. Chemical properties of TlF

In order to demonstrate that the basis sets used in
work contain sufficient variational freedom in the valen
region to represent accurately the chemical bonding of
1S1 ground state of TlF, we completed a number of Dira
Hartree-Fock~DHF! calculations of the electronic structur
of TlF, and determined chemical parameters such as
equilibrium bond length (r eq), harmonic force constant (k0),
and harmonic vibrational frequency (n0). All the thallium
fluoride calculations reported in this paper were perform
with theDIRAC program package@38#, but, during the course
of this study, a number of comparative calculations of bo
electronic structure andPT-odd effects were also performe
using independentmethods employed in theBERTHA pro-
gram package@39#. Precise agreement was found betwe
the results obtained byDIRAC andBERTHA if identical values
of the speed of light, the internuclear separation, the nuc
structure parameters, and basis set exponents were use

d

ar

TABLE III. Relativistic dual-family 25s24p16d10f , energy-
optimized basis set, Tl-erg, where the functions in the valence
gion have been replaced with short sequences of even-temp
functions. The exponents are labeledl, and thel values for which
the exponents are employed, are denoted by ($ l l%).

l $ l l% l $ l l%

50 980 195.85 (s) 18 626 562.61 (p)
11 526 467.50 (s) 3 444 971.589 (p)
3 216 581.844 (s) 800 643.0337 (p)
984 796.7808 (s) 215 991.5182 (p)
326 098.2911 (s) 65 027.984 47 (p)
114 874.8526 (s) 21 519.260 32 (p)
42 723.849 63 (s) 7 794.177 919 (p)
16 646.467 27 (s,d) 3 071.601 225 (p)
6760.138 769 (s,d) 1 302.202 853 (p)
2850.823 938 (s,d) 585.022 9722 (p, f )
1244.074 062 (s,d) 274.761 7212 (p, f )
558.424 386 9 (s,d) 133.303 1257 (p, f )
256.512 658 6 (s,d) 64.772 615 41 (p, f )
122.964 838 4 (s,d) 32.734 087 26 (p, f )
60.835 291 56 (s,d) 16.411 963 38 (p, f )
30.792 721 53 (s,d) 8.065 415 659 (p, f )
15.312 508 74 (s,d) 3.882 289 818 (p, f )
7.516 325 476 (s,d) 1.866 490 000 (p, f )
3.622 059 784 (s,d) 0.897 349 000 (p, f )
1.741 370 000 (s,d) 0.431 418 000 (p)
0.837 199 000 (s,d) 0.207 412 000 (p)
0.402 500 000 (s,d) 0.099 717 500 (p)
0.193 509 000 (s,d) 0.047 941 100 (p)
0.093 033 400 (s) 0.023 048 600 (p)
0.044 727 600 (s)
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TABLE IV. Comparison of orbital eigenvalues~a.u.! and the ratios of power series coefficients, (q0 /p0)21 and (p0 /q0)11, for average
of configuration calculations for the thallium atom. The values were obtained using the finite-difference programGRASP @47#, the energy-
optimized basis set, Tl-erg in Table III, and the even-tempered basis set, Tl-4 in Table II. The values (q0 /p0)21 and (p0 /q0)11 are given
only for uku561, because these are the symmetry types for which this parameter contributes most crucially to thePT-odd parameters.

GRASP (p0 /q0)k Tl-erg (p0 /q0)k Tl-4 (p0 /q0)k

1s 23164.179 703 14 22611.14 23164.178 507 76 22603.56 23164.179 856 86 22614.94
2s 2568.844 019 19 22617.40 2568.843 413 13 22609.92 2568.843 867 47 22620.65
2p- 2544.949 523 40 2708.66 2544.948 178 72 2049.27 2544.949 394 10 2706.72
2p 2468.916 917 71 2468.916 523 51 2468.916 786 33
3s 2138.363 359 38 22618.43 2138.362 838 69 22611.02 2138.362 796 18 22621.02
3p- 2127.652 414 82 2709.64 2127.651 685 77 2050.17 2127.651 926 81 2707.65
3p 2110.528 050 13 2110.527 569 58 2110.527 517 15
3d- 293.083 780 78 293.083 281 55 293.082 690 12
3d 289.459 950 59 289.459 531 60 289.459 448 46
4s 232.292 565 14 22618.68 232.291 976 89 22611.14 232.291 764 88 22618.42
4p- 227.644 266 92 2709.87 227.643 624 15 2050.39 227.643 509 82 2708.01
4p 223.427 452 61 223.426 875 63 223.426 681 20
4d- 215.843 560 55 215.842 991 21 215.842 694 12
4d 215.046 486 92 215.045 943 24 215.045 789 54
5s 25.619 084 82 22618.74 25.618 481 96 22611.54 25.618 591 89 22616.96
4 f - 25.190 802 89 25.190 222 59 25.189 828 54
4 f 25.014 787 63 25.014 242 73 25.013 963 12
5p- 23.985 138 93 2709.93 23.984 530 12 2050.47 23.984 681 01 2708.03
5p 23.217 326 84 23.216 750 75 23.216 904 03
5d- 20.894 494 36 20.893 956 43 20.894 097 14
5d 20.806 172 61 20.805 686 78 20.805 809 00
6s 20.449 192 49 22618.75 20.448 861 31 22611.67 20.449 050 92 22616.99
6p- 20.211 355 73 2710.10 20.211 057 58 2050.49 20.211 255 32 2708.01
6p 20.176 544 79 20.176 253 10 20.176 444 24
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A series of calculations were performed using basis
Tl-3b at internuclear separations centered at the experime
value of the equilibrium bond length. The variation of th
total energy with the bond length is displayed in Fig. 4,
which is superimposed the vibrational zero-point energy,
suming that TlF behaves like a harmonic oscillator. The c
responding nonrelativistic Hartree-Fock~HF! calculations
were performed in the same basis using the program sys

FIG. 4. The DHF potential-energy surface for thallium fluori
in the vicinity of the equilibrium bond length. The zero-point vibr
tional level is shown in the figure.
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DALTON @43#. From these calculations, we deduced the sp
troscopic parameters, the values of which are presente
Table V.

Since the DHF and HF calculations were performed in
same basis, we may interpret differences between the
calculations directly, as single-particle relativistic effec
Use of the Dirac single-particle Hamiltonian instead of t
nonrelativistic Schro¨dinger operator causes a small expa
sion of the internuclear bond length. The better agreemen
the HF and experimentalr eq values must be regarded as fo
tuitous, since the DHF and HF values do not include a
electron correlation, which tends to stabilize the syste

TABLE V. Relativistic Dirac-Hartree-Fock~DHF! and nonrela-
tivistic Hartree-Fock~HF! values of the equilibrium bond length
r eq, the force constantk0, and the harmonic vibrational frequenc
n0 for the 1S1 ground state of thallium fluoride. The calculation
have been performed with the basis set Tl-3b in Table II. The
sults are compared with the experimental values~Expt.! quoted in
Huber and Herzberg@62#, and the force constants and vibration
frequencies are related through the reduced masses@62#.

r eq ~Å! k0 ~N m21) n0 ~cm21)

DHF 2.092 227 470
HF 2.085 265 509
Expt. 2.084 233 477
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TABLE VI. Variation of Xj , X, M , T ~a.u.!, and the electric field in the direction ofl, El ~a.u.! for
calculations on thallium fluoride with basis sets for thallium defined in Table II. Spinors withv5umj u
Þ6

1
2 give no significant contributions toX, M , or T, and only the value ofXj for v5

1
2 spinors with

significant contributions toX is included in the main body of the table. The most significant atomic con
butions to the molecular spinors are indicated. The values were obtained with an internuclear distance
Å, which is close to the DHF equilibrium bond length. Powers of ten are given in parentheses.

j Tl-1 Tl-2 Tl-3a Tl-3b Tl-4

1 1s1/2~Tl! 67.21 64.78 67.99 67.06 70.01
2 2s1/2~Tl! 270.81 290.16 2120.48 288.50 2103.99
3 2p1/2~Tl! 265.29 41.67 114.82 89.33 105.95
5 2p3/2~Tl! 43.10 46.10 51.64 42.75 45.22
6 3s1/2~Tl! 84.63 86.58 54.63 116.66 115.42
7 3p1/2~Tl! 230.18 226.66 220.40 263.18 257.38
9 3p3/2~Tl! 23.51 3.29 21.34 22.49 0.92
15 4s1/2~Tl! 227.50 243.02 2105.04 231.77 234.45
16 4p1/2~Tl! 222.28 138.66 132.35 86.85 67.10
19 4p3/2~Tl! 72.14 82.53 110.28 81.35 79.13
25 5s1/2~Tl! 2463.71 2494.83 2585.03 2552.23 2520.10
33 5p1/2~Tl! 354.14 379.46 515.38 500.62 490.47
35 5p3/2~Tl! 457.26 472.86 507.69 496.57 466.22
36 2s1/2~F! 2143.83 2139.86 2145.31 2145.31 2150.46
42 6s1/2(Tl) 12p~F! 22365.12 22330.64 22421.13 22420.49 22495.50
43 2p~F! 234.26 233.31 238.30 238.30 243.03
45 6s1/2(Tl) 12p~F! 5950.65 5884.52 6101.26 6103.63 6335.18

X 8098.38 8089.30 8491.22 8491.54 8746.63
M 13.64 13.62 13.66 13.66 13.63
T 222.48 222.42 222.41 222.41 222.44
El 28.284(24! 21.359(23! 22.016(23! 27.123(25! 21.252(23!
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Both k0 andn0, however, are significantly better represent
by DHF theory than by the HF results. On the basis of th
observations, it would appear that the shape of the pote
energy surface generated by the DHF calculations is a g
approximation to the true Born-Oppenheimer function in
equilibrium region, except that it should be uniformly shifte
to slightly shorter internuclear separations, and to an ene
which is lower than the DHF equilibrium value by a
amount equal to the correction to the DHF energy due
electron correlation and small corrections from the Breit
teraction.

The derivation of thePT-odd parameterX defined in Sec.
II A requires that the electronic structure calculations be p
formed in an electronic environment in which the net for
on the Tl nucleus vanishes at the equilibrium bond leng
For a fully optimizedself-consistent-field wave function or
wave function at the Hartree-Fock limit, the Hellman
Feynman force on the nucleus,FHF, defined by

FHF52^“V&, ~119!

is equal to the physical force on the nucleus,

F52“^H&. ~120!

The equivalence of these quantities, and the requirement
the average force on the nuclei must vanish at the minim
value of the potential energy surface, is therefore a crit
test of the quality of the basis set~see, e.g., Ref.@50#!. Note
e
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o
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.
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m
l

also that the qualificationfully optimized, in this case, refers
not only to the linear variational parameters, but also to
positions of the origins at which each basis function is c
tered. To investigate the completeness of our basis sets
calculated the electric field at the thallium nucleus in t
direction ofl due to all of the charges in the TlF molecu
(El), the results of which are given in Table VI. For th
Tl-3b basis set we also calculated the electric field at diff
ent internuclear distances. These results are summarize
Table VII. In common with quantum-chemical experienc
we find a strong basis set dependence on this quantity, e
though the field was calculated at a bond distance of 2.10
close to the minimum point of the DHF potential for all o
the basis sets. If we compare the values ofEl obtained for
basis sets Tl-1, Tl-2, Tl-3a, and Tl-4, we find no obvio
systematic behavior as the basis set dimension is increa
and no evidence that the value ofEl is likely to vanish if we
were to continue to augment the basis with mores-, p-, d-,
or f -type functions. These calculations also show that
residual electric field is nearly constant with respect to va
tions in the internuclear separation, and that it does not v
ish anywhere in the neighborhood of the equilibrium bo
length. Any calculation with these basis sets therefore f
mally invalidates the assumptions built into the derivation
the PT-odd operators. Calculations with the energy op
mized basis set Tl-erg give similar results, yielding an alm
constant electric field of20.0015 a.u. for all internuclea
separations sampled by the classical ground-state vibrati
amplitude.
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TABLE VII. Variation in X, M , T, andEl ~a.u.! with changes in the internuclear separation,r ~Å!, for
calculations with the basis set Tl-3b in Table II. Powers of ten are given in parentheses.

r 2.00 2.05 2.10 2.15 2.20

X 8625.82 8586.42 8491.54 8361.80 8202.43
M 13.34 13.56 13.66 13.66 13.58
T 223.19 222.85 222.41 221.92 221.37
El 26.070(24! 23.112(24! 27.123(25! 1.226(24! 2.780(24!
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The Hellmann-Feynman theorem may also be satis
approximately in a calculation that is optimized only wi
respect to the linear variational parameters, if the basis s
‘‘almost complete,’’ and particularly if it includes additiona
functions which are able to reflect the polarization of
atomic shells due to binding@51#. A nonrelativistic polariza-
tion function for atomic Tl is ofg type, and we must include
scalar functions of this type in the large component ba
The corresponding scalarh-type functions in the small com
ponent basis are introduced in order to satisfy the kin
balance prescription, increasing the computational dema
by a significant factor. It is for this reason that basis set Tl
was designed. It includes an atomic basis for Tl and F
good quality, with polarization functions for all atomic she
in order to restore the equilibrium of forces at the Tl nucle
in the region of the potential energy minimum. The effect
El is dramatic, reducing its value by two orders of mag
tude. With this basis, the Hellmann-Feynman force vanis
at an internuclear separation of 2.12 Å, close to the minim
point of the potential energy surface.

We also performed calculations of the spectroscopic
rameters in Table V with the basis set Tl-3a in order
compare with the Tl-3b calculations. These calculations g
identical results to Tl-3b with the precision given in Table
showing that even if the polarization functions for the de
valence f spinors has large consequences for the elec
field at the thallium nucleus it has a negligible effect on t
spectroscopic properties at the DHF level. We did not cal
late the spectroscopic parameters with the other basis
but from our experience with calculations of valence prop
ties we expect that the position of the minimum of t
potential-energy surface will vary by less than a few pico
eters for the basis sets which we have considered.

B. Calculation of PT-odd parameters

In the case of thePT-odd parameters, where there exis
no experimental quantity with which we may compare
assess the accuracy of our calculations, it is imperative th
detailed study be made of the sensitivity of the parameter
details of the calculation. These details include the choice
basis set, basis set superposition errors, the electrostatic
librium condition, and the internuclear separation. In Ta
VI we summarize the calculated values forX, M , andT for
the basis sets Tl-1–Tl-4. All the parameters are calculate
a bond length of 2.10 Å which is close to the equilibriu
bond length for all the basis sets. The individual spinor c
tributionsXj are also given for all the spinors with a signifi
cant contribution toX. In Table VII we summarize the cal
culatedPT-odd parameters at different internuclear distan
for the Tl-3b basis set.
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It can be seen from Table VI that of thePT-odd param-
eters,X is by far the most sensitive to the completeness
the basis set. This is not surprising, sinceX is determined
from the spinor amplitudes at a single point. The parame
M and T, on the other hand, are derived from global int
grals over the four-spinor amplitudes. In both cases, the
tegrals involve operators which very strongly weigh the
gion near the center of mass of the Tl nucleus, but
distribution of the integrand over these highly localiz
weight functions is sufficient to reduce the sensitivity ofM
and T to numerical errors in the spinor amplitudes. If w
examine the data for all basis sets, we find that the value
M and T exhibit satisfactory stability with respect to th
basis set, and the values seem to be converged with res
to basis set size to within 2% of the DHF limit. The tot
value ofX in Table VI is less stable with respect to basis s
and in the analysis below we will summarize the numeri
experiments we have performed to demonstrate that the
values are sufficiently stable for our purpose.

The two smallest basis sets Tl-1 and Tl-2 both give valu
of X of approximately 8100 a.u., the intermediate basis s
Tl-3a and Tl-3b yield a value of approximately 8500 a.
and the largest basis set Tl-4 yields a value close to 8750
However, a spread in the results of this size is to be expe
from the calculated values ofp0 and q0 for the thallium
atom, if the values for each basis set are inserted in
~104!. Of the basis sets, we expect Tl-4 to be the most ac
rate, both because it contains the largest number of functi
and because it gave the best results for the ratiop0 /q0 in
calculations of the structure of atomic Tl. The ratios are clo
to the finite difference results, and we expectX calculated
from this basis set to differ by not more than a few perc
from the DHF limit. It is interesting to note that while th
total X is quite stable with basis set, the contributions for t
core spinors vary substantially, and there is no apparent tr
in the results. The difference between values derived fr
the basis sets Tl-3a and Tl-3b is particularly significant.
we saw in Sec. VI A, addingg-type polarization functions to
the basis set changes the electric field at the thallium nuc
dramatically, and the Hellmann-Feynman theorem is sa
fied, to a good approximation. The difference in the calc
lated electric field using basis sets Tl-3a and Tl-3b indu
large changes in the values of theXj contributions, including
even a change of sign for one of the core spinors. At
same time thetotal value ofX is only changed from 8491.22
to 8491.54 a.u., and the dramatic change in the electric fi
has almost no effect on the total value for thisPT-odd prop-
erty. The remarkable conclusion to be drawn from these
servations is that cancellations in the core-orbital contri
tions are sufficiently precise that only the valence electr
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make any significant contribution to the parameters of in
est, and that the valence spinors are quite insensitive to
addition of g-type polarization functions, and to the failur
of the electric field at the Tl nucleus to vanish at the equil
rium when an incomplete basis set is used.

The causes of the significant fluctuations in the value oX
as the basis set is changed are apparent if we examin
greater detail the orbital contributions,Xj . The most signifi-
cant data are probably theXj values for the spinors labeled
and 3. Molecular spinorc2 is derived from the Tl 2s1/2
atomic spinor, while spinorc3 is a weakly perturbed Tl 2p1/2
atomic spinor. These two orbitals are very close in energ
one another, but are widely separated in energy from
other TlF single-particle states. The spatial extent of b
spinors is restricted to the region in the neighborhood of
Tl nucleus. Consequently, any nonspherical effective po
tial, arising either from the molecular environment, or due
an incompleteness in the basis set, mixes the atomic 2s1/2
and 2p1/2 atomic orbitals to formc2 andc3 in proportions
which maintain the orthonormality of the molecular fou
spinors. There is a delicate cancellation between contr
tions from c2 and c3 which arises through symmetry con
siderations, rather than from details of the effecti
molecular potential which causes the mixing of the co
atomic orbitals to form the core molecular spinors. Simil
more elaborate cancellations of contributions occur for e
of the shells of core atomic orbitals, which are mixed duri
bond formation to produce an orthonormal set of molecu
spinors. The final values ofX is derived almost wholly from
the contributions from molecular spinorsc42 andc45, which
are the valence orbitals formed by the formal transfer of
electron from the thallium atom to the fluorine atom wh
the ionic molecule TlF is formed. As a result, we conclu
that thePT-odd parameters are sensitive mainly to the n
spherical effective potential which results from bond form
tion, and which determines the amplitudes of the vale
spinors, rather than to details of the electric field at the ce
of mass of the Tl nucleus.

The most extreme example of sensitivity to the basis
arises if we calculateX using the energy optimized basis se
Tl-erg. This basis results in the lowest total energy for TlF
all the basis sets, but we find thatX5225068 a.u., which
differs from the value obtained using our systematically c
structed sets of functions by a factor of approximately23.
The reason for this apparent discrepancy is that the funct
which comprise Tl-erg have been optimized using total
ergy as the guiding criterion of quality. In the calculation
X, the cancellation between contributions from the com
nents is subtle, and involves mainly the large component
s1/2 functions, and the small components ofp1/2 functions.
Clearly, the optimization procedure which generated the
sis set Tl-erg does not maintain this delicate balance, des
its ability to represent single-particle quantities such as
bital eigenvalues. Extension of the basis to include mores-
andp-type basis functions with large exponent values is
quired in order to improve the spinor representations near
nuclei; this extension would have a negligible effect on
calculated values of the chemical properties or the total
ergy.

From Eqs.~108! and~109! we may deduce the key featur
of the numerical evaluation ofX which explains why our
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calculations appear to be so sensitive to the choice of b
set. Strong numerical cancellations in the large- and sm
component parts ofX21,1 are expected to occur, becau
every orbital contribution is calculated as a linear combin
tion of terms of the type defined by Eq.~108! and this is also
what we observe in our calculations. The Tl-4 calculatio
for example, yieldX58747 a.u., which is obtained from th
sum of large- and small-component contributions, which
149 630 and2140 883 a.u., respectively. This imposes u
usually stringent requirements on the basis set expansio
the spinor amplitudes in the neighborhood of the Tl nucle
which the basis set Tl-erg fails to fulfill.

In summary, all of the basis sets except Tl-3b are of
same quality for the calculation of the electric field at t
thallium nucleus, giving results that are not in agreem
with the Hellmann-Feynman theorem and a field that d
not vanish close to the equilibrium bond length. Of the
basis sets, only Tl-erg gives a wholly unsatisfactory res
for X, even though it yields the lowest total energy for Tl
Augmenting the basis set Tl-3a with extra polarization fun
tions, resulting in Tl-3b, gives a basis set where t
Hellmann-Feynman theorem is approximately satisfied.
the same time the difference in the total value ofX for basis
sets Tl-3a and Tl-3b is negligible, even though the co
orbital contributionsXj are sensitive to the residual electr
field generated by Tl-3a. We conclude that accuracy of
total energy, orbital energies, and single-particle matrix e
ments such as the electric field at the nucleus provided
sufficiently rigorous tests of basis set quality in the calcu
tion of X. The basis set which is used must instead be abl
reproduce finite difference amplitudes in the nuclear reg
and in particular give values for the ratio (p0 /q0) close to
the DHF limit.

One common situation in which basis set incompleten
has important effects in quantum chemistry is due to ba
set superposition error. It is possible that the use of inco
plete atom-centered basis sets could bias our calculation
the electric field andPT-odd parameters because of th
asymmetric distribution of basis functions which this enta
for TlF. Consequently, we investigated the effect of intr
ducing ‘‘ghost’’ functions, by copying the F-centered bas
to the mirror point in space with respect to reflection in t
Tl-nucleus coordinates. We also performed calculations
the PT-odd parameters for the Tl1 ion in the unsymmetric
basis set where the F ghost basis set was introduced a
position of the F atom in TlF. We concluded from this stu
that no value ofX, M , andT is in error by more than 1% due
to an unsymmetric distribution of the basis functions in t
set. However this insensitivity parallels that which was o
served when polarization functions were added to the ba
the changes inXj for the core orbitals may be by as much
10–20 a.u., but the changes cancel due to the orthonorm
constraints of the molecular spinors, so that only bond
contributions determine the total values.

In Table VII, we present the variation inX, M , T, andEl

due to variations inr , calculated using basis set Tl-3b. Th
range of values forr in the table spans the whole region
the zero-point vibrational amplitude given in Fig. 4. To
good approximation, we find thatX and El vary linearly
with internuclear separation although the agreement in
case ofEl is not perfect, presumably because of basis
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incompleteness. Interestingly,M appears to have a weak
quadratic dependence onr 2r eq, achieving a maximum
value close to the point at which the electric field vanish
The average value ofX and T over the ground-state vibra
tional amplitude is well-represented by its value atr 5r eq,
because of the approximately linear dependence of th
quantities on (r 2r eq). Strictly, one should take the vibra
tional average ofX, M , and T, but the variation is either
linear or so small over the vibrational amplitude that t
value atr 5r eq is sufficiently accurate for our purposes.

Given that we have established the insensitivity of
experimentally relevant parametersX, M , andT to variations
in the bond length, basis set superposition error, polariza
functions, and residual electric fields at the205Tl nucleus, we
summarize our final results for our best basis set, Tl-4
Table VIII. We estimate that these values differ from t
vibrationally averaged values calculated at the DHF limit
less than 8% forX, and 2% forM andT.

In order to make a comparison with earlier determinatio
of the PT-odd parameters, we performed a calculation oX
by settingc510 000 a.u., which is sufficiently large for us t
obtain an estimate ofX in the nonrelativistic limit,c→`. In
this case, the contribution toXj from terms of the form de-
fined by Eq.~104! involve no strong cancellation, becau
q0→0 for all atomic symmetry types. We find that the no
relativistic value ofX is 1130 a.u., and that its value is in
sensitive to variations in the basis set. The relativistic
hancement factor defined by Hinds and Sandars@19# is
approximately seven. This is in good agreement with
analysis of Khriplovich@52#, who suggested that its valu
should be 6.5 on the basis of atomic calculations. It is als
agreement with the estimate of the relativistic enhancem
factor of Coveney and Sandars@21#, who calculated its value
by matching nonrelativistic molecular orbitals to relativis
atomic spinor amplitudes.

From Eq.~109!, it is clear that the dominant contributio
to the electronic matrix element from the nuclear dens
comes fromV0, and not from the details of the nuclea
shape. This implies that the use of a Gaussian nucl
whose mean-square radius is chosen to match experim
parameters, is of sufficient accuracy for this problem, p
vided thatV0 matches more sophisticated estimates obtain
for example, from a Fermi distribution.

It is unlikely that the inclusion of electron correlation wi
have a significant effect on the calculated values ofX, M ,
andT. The functional form and spatial domain of the ope
tors associated with these quantities resembles those enc
tered in the calculation of NMR shielding tensors. F
closed-shell systems and for the shielding tensor compon
associated with heavy nuclei, a self-consistent-field treatm
of this property is usually reliable. This observation is inva
dated for open-shell systems, in which core polarizat
plays a crucial role, or for the shielding tensors associa
with light nuclei, in which the nuclear electrostatic field
unable to dominate the physical behavior. Of course, i
desirable that many-body effects be investigated in the c
text of the PT-odd interaction parameters, and is a stu
which we hope to perform in the future.

The most recent previous determination ofX, M , andT
was made by Coveney and Sandars@21# using nonrelativistic
quantum chemistry methods and a procedure which mat
.
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molecular orbitals to atomic spinors. In Table IX we com
pare our values for these parameters with those obtaine
Ref. @21#.

C. Determination of dp , CT , and Q

The calculation ofdM in Eq. ~48! requires the use of som
experimentally determined parameters, which we take
have the valuesZ581, MN5205mp53.7643105 a.u. and
gN51.638. From these data and the value ofM from Table
IX, we derive the relation

dM521.92331026dp a.u. ~121!

The volume effect parameterdV involves the nuclear struc
ture factorR, which we take to be

R52.9 fm3 ~122!

51.03631029 a.u. ~123!

This value was obtained by Brown, and quoted in Ref.@21#.
Calculations of the nuclear structure factor rely on mo
potentials derived mainly from experimental scattering da
and postulated forms for an effective nucleon-nucleon in
action. In view of these limitations of nuclear structure c
culations, and the large cancellations involved in the eva
ation of the difference between the mean-square charge
dipole densities in205Tl, the calculation ofR presents the
largest source of theoretical uncertainty in the calculation
the volume effect, within our physical model. Using th
value ofX from Table IX, we obtain

dV59.06231026dp a.u., ~124!

and note thatdM/dp is about one-fifth of the magnitude o
dV/dp , and has the opposite sign.

In order that the treatment of the volume and magne
effects is consistent with the theoretical analysis, we h
treated the sign of the EDM as significant, rather than tak
the absolute value, as was done in Refs.@19# and @21#. We
may quite simply adjust the most recent value of Coven
and Sandars@21# to conform with our treatment of the tota
effect arising due todp , yielding

udCS
V u1udCS

M u
dp

52.82731026 a.u. ~125!

53.50531018 Hz/~e cm!,
~126!

which may be compared with the results of our calculatio

dV1dM

dp
57.13831026 a.u. ~127!

58.85131018 Hz/~e cm!.
~128!

By taking the ratio of our result with that of Coveney an
Sandars, and adjusting the analysis of Ref.@24# by this fac-
tor, we obtain the revised proton EDM limitdp5(21.5
62.5)310223e cm. Revised limits for the tensor and Schi
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TABLE VIII. Four-spinor eigenvalues« j , and orbital contributions toX, M , andT ~a.u.!, obtained using
our best basis set, Tl-4 for the 45 spinors withmj.0. The total electronic energy obtained in this basis
is 220 374.453 554 00 a.u.; the total values ofX, M , andT for all 90 electrons are, respectively, 8746.6
13.630, and222.442 a.u.

j « j Xj Tj M j

1 23164.193 799 39 70.01 20.133 0.130
2 2568.857 226 60 2103.99 0.396 20.097
3 2544.962 817 28 105.95 20.516 0.014
4 2468.930 338 41 0.00 0.000 0.003
5 2468.930 045 53 45.22 0.000 0.181
6 2138.376 337 03 115.42 20.425 0.107
7 2127.665 461 32 257.38 0.284 20.014
8 2110.541 590 98 0.00 0.000 20.005
9 2110.540 606 03 0.92 0.000 20.005
10 293.096 748 69 0.00 0.000 0.001
11 293.095 815 64 0.15 0.000 0.005
12 289.473 748 47 0.00 0.000 0.000
13 289.472 913 21 0.00 0.000 0.006
14 289.472 547 02 20.00 0.000 0.003
15 232.305 529 50 234.45 0.032 20.105
16 227.657 334 11 67.10 20.289 20.042
17 226.185 188 41 20.00 0.000 0.016
18 223.441 576 19 0.00 0.000 20.015
19 223.439 498 37 79.13 0.000 0.284
20 215.857 855 03 0.00 0.000 20.001
21 215.855 581 32 1.14 20.000 0.034
22 215.061 518 46 0.00 0.000 20.001
23 215.059 508 95 0.00 0.000 0.019
24 215.058 550 63 0.01 0.000 0.016
25 25.633 527 91 2520.10 1.203 21.001
26 25.205 766 38 0.00 0.000 0.000
27 25.203 446 49 0.00 0.000 0.004
28 25.202 269 08 0.02 20.000 0.005
29 25.030 266 94 0.00 0.000 0.000
30 25.028 316 93 0.00 0.000 0.003
31 25.027 000 32 0.00 0.000 0.003
32 25.026 342 31 0.04 0.000 0.004
33 24.000 323 54 490.47 22.189 20.159
34 23.235 481 89 0.00 0.000 20.042
35 23.230 751 89 466.22 20.011 1.720
36 21.425 377 94 2150.46 0.289 20.272
37 20.914 925 11 0.00 0.000 20.006
38 20.909 683 59 0.68 20.002 0.021
39 20.828 466 23 0.00 0.000 20.003
40 20.823 986 34 0.55 0.003 0.053
41 20.823 457 76 0.00 0.000 0.038
42 20.560 884 17 22495.50 5.284 25.383
43 20.511 923 24 243.03 0.304 20.027
44 20.511 141 43 0.00 0.000 20.050
45 20.391 670 69 6335.18 215.450 11.371
lie
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moment interaction constantsCT and Q, respectively, are
obtained directly by taking ratios of the values ofT andX in
our work with those used in the analysis of@24#. The results
are summarized in Table IX, and compared with the ear
results from the experiments of Ref.@24#.

Our results forX, M , andT are larger than those obtaine
r

in Ref. @21# by factors ranging between 3 and 5, and con
quently our estimates of the bounds ondp , CT , andQ are
tighter than previous limits by corresponding factors. The
is a difference in our treatment ofdp , compared with that
adopted in Refs.@19,21#, since we have retained the signs
the interaction parametersX andM throughout our analysis
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TABLE IX. Numerical values ofX, M , andT, and thePT-odd parametersdp , CT , andQ deduced from
the TlF molecular beam experiments reported in Ref.@24#.

X ~a.u.! M ~a.u.! T ~a.u.! dp ~e cm! CT Q ~e fm3!

@21,24# 2128 4.41 24.12 (23.766.3)310223 (21.562.6)31027 (2.363.9)310210

This work 8747 13.63 222.44 (21.562.5)310223 (22.864.8)31028 (5.669.5)310211
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rather than working with the absolute values of the const
ent parts. Nevertheless, these revised estimates, based o
electronic structure calculations and the experiments of R
@24#, are the tightest available for the fundamentalPT-odd
interaction parametersdp , CT , andQ.

D. Other PT-odd interaction parameters

Limits on thePT-odd parametersdp , CT , andQ are not
the only ones which could be deduced from our calculatio
but they are the ones for which the TlF experiment provid
the tightest limits. We shall now briefly consider oth
PT-odd interactions in the context of the TlF experiment

The effective operatorHd corresponding to the interactio
of an electron EDMde , with an external electric fieldE,
may be written in the alternative forms@29#

Hd52de~g02I !s•E ~129!

522idecg0g5p2. ~130!

These effective operators are equivalent in the sense
their expectation values are identical if calculated in ex
eigenstates of a Dirac operator. In practice, Eq.~129! in-
volves only the localized small component density, andE is
effectively dominated by the nuclear Coulomb field,
many-body contributions toE may be neglected, to a goo
approximation@29#. It is found that agreement between m
trix elements of this one-body approximation to Eq.~129!
and those of the exact one-body form Eq.~130! is obtained at
about the 3% level@29,53#. Either form of the operator is
PT-odd in the electronic coordinates, and vanishes ide
cally in first-order for a closed-shell molecule such as TlF
nonzero interaction energy may, however, be obtained if
consider thecombined first-order effects ofHd and the
nuclear hyperfine interaction. Flambaum and Khriplovi
@54# obtained limits onde from the TlF experiment by ex
ploiting this combined effect, which were later refined
Ref. @24#. The limits obtained by this approach were summ
rized in Table 3 of the review article by Ma˚rtensson-Pendrill
@55#, yielding de51.762.9310225e cm. Our own calcula-
tions reduce this limit by a factor of about 4, since the th
oretical values depend on quantities related to the calcula
of X and M , and are related to the Coveney and Sand
values from which the limit is derived by the same fact
However, measurements on paramagnetic species which
directly sensitive tode yield even tighter limits and for ex
ample, electron EDM experiments on atomic thallium
limits of (2368)310227e cm onde , which is an order of
magnitude tighter than the limits derived from the TlF e
periment. This value also involves less theoretical unc
-
our
f.

s,
s

at
t

i-

e

-

-
n

rs
.
are

t

r-

tainty, because of the more accurate treatment of elec
correlation which is possible in atomic calculations
nuclear hyperfine structure.

In order to circumvent the use of nuclear hyperfine int
actions in the determination ofde , while exploiting the ex-
perimental sensitivity afforded by molecular experiments
spin-rotational structure, Sauer, Wang, and Hinds@56# de-
vised a molecular spin interferometry experiment on
paramagnetic species2S YbF. The designed sensitivity o
this experiment isde.10228e cm, which is far in excess o
that which may be obtained from our calculations of Tl
These experiments involve the direct effect ofHd on the spin
population of a molecular YbF beam, and requires the se
rateab initio calculations of the open-shell structure of th
radical for their interpretation. These calculations have n
been performed, and will be reported elsewhere@53#.

One may also derive values of the scalar interaction c
stantCS defined in Eq.~49! by comparing the value ofQ
derived from the TlF experiment with nuclear structure c
culations. Flambaum, Khriplovich, and Sushkov@25# have
argued that nuclear interactions cause a significant enha
ment of interactions involvingĤS . This effect is amplified
by the fact that the nucleon contributions toCS are additive,
resulting in an enhancement ofdS compared todT of order
A, the nuclear mass number. Based on our own calculat
of X and the TlF experimental results, we estimate the lim
on the scalar interaction to beCS5(2263)31026. While
this provides a limit which is comparable with that obtain
from direct measurements on atomic caesium, the tigh
limit on this quantity is obtained by experiments on atom
thallium, which are an order of magnitude smaller; previo
determinations ofCS are summarized in Table 3 of the re
view by Mårtensson-Pendrill@55#. Moreover, the atomic lim-
its are determined solely by electronic structure calculatio
and involve no uncertainties introduced by coupling to t
nuclear structure. Since the205Tl nucleus has a single un
paired proton, whose mean-square charge and dipole d
butions are very similar, nuclear structure uncertainties m
introduce large theoretical errors in any value ofCS derived
from the TlF experiment.

VII. CONCLUSION

There has been a rapid growth in the development of r
tivistic ab initio computational methods by which the ele
tronic structure of molecules containing heavy elements m
be calculated. Such approaches have been made feasib
cause of the resolution of difficulties associated with the
nite basis set parametrization of the Dirac equation, deve
ments in numerical algorithms to evaluate multicen
integrals over two-body interactions, and the steady incre
in the power of electronic computers. In order to expl
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these resources better,direct computational algorithms fo
multicenter integral evaluation have been developed@38,39#.
The processor power available from workstation compu
is used in computationally intensive applications to reduce
eliminate the dependence on external storage devices.
approach was first investigated in the context of nonrela
istic calculations of the structures of extended molecu
containing many nuclei@57#. It may be adopted without sig
nificant change to the calculation of molecules containin
few atoms and many electrons, which is the configurat
characteristic of many interesting problems in heavy-elem
chemistry and molecular physics. Similarly, convention
many-body theory may be applied by adopting the dir
algorithms of quantum chemistry to exploit basis sets of m
lecular four-spinors expanded in a finite basis set
Gaussian-type functions@49,58,59#.

These technological developments have been applied
physical problem which is of considerable importance to
understanding of fundamental interactions in nature, and
which only semiempirical computational approaches h
existed in the past@55,60#. By deriving effective interaction
Hamiltonians from parametrized, phenomenological mod
of PT-odd interactions, we have demonstrated that electro
interaction constants may readily be derived from the e
tronic four-component amplitudes which are obtained fr
DHF calculations. From the calculated parameters and f
published experimental data, we have derived bounds on
value of the electric dipole moment of the proton,dp , the
tensor coupling constantCT , and the Schiff moment of the
205Tl nucleus,Q, which are the tightest available of thes
quantities.

From a computational point of view, the successful cal
lation of the electronic volume effect parameterX provides a
demonstration that the DHF approximation, when formula
using basis sets which satisfy the restricted kinetic bala
prescription, provides numerical values of the electronic a
plitudes of high accuracy. The four-spinor amplitudes o
tained using this approach may be used in much the s
way as basis set approximations of spin-orbital amplitude
nonrelativistic quantum chemistry. The methods develo
here may be applied to problems beyond the narrow field
PT-odd interactions. The characteristic feature of allPT-odd
operators considered here is the coupling that they invo
between the electronic charge and current densities in
neighborhood of heavy nuclei with the electrostatic and m
netic fields associated with those nuclei. This is also a ch
acteristic feature of the calculation of magnetic shielding a
spin-spin coupling constants in systems containing heavy
ements, and in the calculation of nuclear hyperfine const
in molecules. We expect that the numerical experie
gained in the present study will be of immediate relevance
the study of these chemical properties using relativisticab
initio quantum chemistry.
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APPENDIX A: EFFECTIVE PT-ODD MAGNETIC
MOMENT INTERACTION

Following Schiff @15#, we define the one-particle opera
tors

T52(
i

1

2mi
¹ i

2 , ~A1!

V05(
i . j

qiqjE E rCi~r!rC j~r8!
1

ur i2r j1r2r8u
d3r d3r 8,

~A2!

V5(
i

qiE rCi~r!f~r i1r!d3r , ~A3!

U5(
iÞ j

qidjsj–E E ~r i2r j1r2r8!

ur i2r j1r2r8u3

3rCi~r!rM j~r8!d3r d3r 8, ~A4!

W5(
i

disi–“ iE rMi~r!f~r i1r!d3r , ~A5!

whererCi(r) is the charge density of particlei , rMi(r) is its
electric dipole moment density,di is its electric dipole mo-
ment,qi is its charge,mi is its mass, andf(r)5cA0 is the
electrostatic potential atr. The electric dipole moment asso
ciated with particlei is in the directionsi . All second- and
higher-order effects involving dipole-dipole interactions a
neglected.

Schiff demonstrates that the Hamiltonian of the syste
H, can be written in the form

H5exp~ iQ !H0exp~2 iQ !1 1
2 †Q,@Q,H0#‡1•••,

~A6!

where Q is defined in Eq.~37!, and H0 is the part ofH
independent of any EDM’s. In the present case,H05T
1V01V1Hm . Furthermore,

i @Q,V0#5U8, ~A7!

i @Q,V#5W8, ~A8!

whereU8 andW8 are constructed fromU andW by replac-
ing the dipole densityrM ,i(r) by the charge densityrC,i(r).
Since we have assumed that the particles are pointlike
that Q involves only the coordinates of a single proton, w
find thatU2 i @Q,V0#50 andW2 i @Q,V#50. To first order
in dp , the nonvanishing parts ofH may be written in the
form
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H5H01 i @Q,H0#1~U2 i @Q,V0# !1~W2 i @Q,V# !

2 i @Q,Hm# ~A9!

5exp~ iQ !H0exp~2 iQ !2 i @Q,Hm#, ~A10!

as required.

APPENDIX B: EFFECTIVE PT-ODD MAGNETIC FIELD
INTERACTION

In order to derive an effective operator for the magne
interactions, Hinds@61# employed the operator identity

p3S r3a

r 3 D 2S r3a

r 3 D 3p5~p•a!
r

r 3
2

p•r

r 3
a1

r

r 3
~a•p!

2a
r•p

r 3
. ~B1!

In order to reduce this operator to a computationally con
nient form, we make use of the relations

~s•A!s5A1 i s3A, ~B2!

s~s•A!5A2 i s3A, ~B3!

~s•A!~s•B!5A•B1 i s•~A3B!, ~B4!

R5
r

r 3
, ~B5!

which are valid for arbitrary spin-independent operatorsA
andB. Substituting them into the defining equation, we ha

p3~R3a!2~R3a!p5@~a•p!R2~s•p!~s•R!a#

1@R~a•p!2a~s•R!~s•p!# ~B6!

1 i $s•~p3R!a1a@s•~R3p!#%
~B7!

5~a•p!@R2~s•R!s#1@R2s~s•R!#~a•p!

1
i

r 3
@a~s• l!2~s• l!a#. ~B8!
P

c

-

e

A factor of g5 has been moved through the brackets so t
the first two operators are proportional to (a•p), rather than
to mixtures involving (s•p). The effect of this is to change
the free factors ofa to free factors ofs in the first two
brackets.

We now assume that we require only the expectat
value of this operator in an eigenfunction of the Dir
Hamiltonian of the form

@c~a•p!1bmc21V~r!#uc&5Euc&, ~B9!

so that, for eigenfunctions of this operator equation, we
write

~a•p!uc&5
1

c
@E2bmc22V~r!#uc&. ~B10!

The operatorÆ5(E2bmc22V) commutes with boths
andR, and the expectation value of the first two terms in t
operator may be written, by virtue of the commutation of t
operators, as

^Æ@2R2~s•R!s2s~s•R!#&5^Æ@2R2R2 i ~s3R!2R

1 i ~s3R!#&50. ~B11!

Only the third part of the complete operator has a nonz
expectation value, which may be written

2
ig5

r 3
$@ l2 i ~s3 l!#2@ l1 i ~s3 l!#%5

2

r 3
~a3 l!,

~B12!

in agreement with the result in Ref.@19#.
The approximation arises because we assume that

eigenstates are simultaneous solutions of the Dirac equa
for a local single-particle potential,V(r). In fact, we could
have terms involving pairs of electrons and mixed elect
coordinates$ i , j %. Mårtensson-Pendrill discusses this in h
review article@55#, and notes that such effects are genera
small in the related hyperfine interaction problem, and can
neglected.
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