
UMP{98{19

School of Physics

Computer System Manual

1998

Lloyd Hollenberg and Robert Scholten

With 1997 updates by: W. Langer and M. Munro

Contents

1 Introduction 4

1.1 The Baker Lab . 4

1.2 Logging in . 6

1.3 Logging out . 6

2 Basics of UNIX 8

2.1 The shell . 8

2.2 Getting help in UNIX . 8

2.3 Customising your account . 9

2.4 Shortcuts for typing in commands 10

3 The UNIX �le system 12

3.1 The File System and basic UNIX commands 12

3.2 Printing . 16

3.3 Copying and pasting with the mouse 17

4 The vi editor 18

5 The emacs editor 20

6 Programming in Fortran 23

6.1 Editing, compiling and running code 23

6.2 Running code in background . 25

6.3 Optimization . 27

6.4 Subprograms: functions and subroutines 27

6.5 Template program . 29

6.6 Debugging and checking fortran code 34

1

7 Editing, compiling and running C code 35

7.1 Compilation . 38

7.2 Functions . 38

7.3 Program
ow . 41

8 PV-WAVE: Graphical Data Analysis 47

8.1 Compiling and executing . 49

8.2 Printing with WAVE . 50

8.3 Reading data . 51

8.4 2D plots with WAVE . 52

8.5 3D Plots with WAVE . 54

8.6 Environment . 55

8.7 Quick Reference Section . 56

9 Fplot: basic plotting and curve �tting 58

9.1 From data to graph . 58

9.2 Printing Fplot graphs . 59

9.3 Miscellaneous commands . 60

9.4 Macros . 60

9.5 Sample macro . 61

9.6 Multiple graphs . 64

10 LaTeX and report writing 66

10.1 Creating, compiling, previewing and printing LaTeX documents . . 66

10.2 Template fourth year report . 68

10.3 More on including �gures . 79

11 Algebraic packages: Mathematica, Maple and Reduce 82

2

12 Electronic mail and the internet 83

12.1 Internet addresses . 83

12.2 Electronic mail . 83

12.3 Telnet and File Transfer Protocol (FTP) 85

12.4 Talking over the Internet . 86

13 World Wide Web 87

14 References and suggested reading (a few starters) 88

15 Appendix 89

15.1 UNIX glossary . 89

15.2 Files and directories . 89

15.3 Printing . 90

15.4 Monitoring and controlling system processes 90

15.5 Communication . 90

3

1. INTRODUCTION

This manual is designed as a quick reference guide to the computing facilities here
at the School of Physics. The material contained herein is primarily directed to
fourth year students, however, anyone who needs to gain a working knowledge of
the system and the various applications available should �nd the information useful.
In no way should this manual be considered an exhaustive reference for any of the
topics { all areas are covered in a format whereby the reader learns by example. For
detailed and more advanced information on the topics covered in this manual the
reader should consult the references recommended in various sections.

1.1. The Baker Lab

The computer system consists of a number of distributed workstations strategically
located throughout the building all networked together and to the campus wide
University and international networks. One of the school's key initiatives has been
to introduce a Computer Laboratory to increase the availability of computing sites
to researchers and as a teaching tool for undergraduates. This laboratory is located
in the East wing of the Physics building on the 4th level. This lab is commonly
called the Baker Lab after the Baker Foundation who graciously donated to its
establishment.

Obtaining an account:

To obtain an account see the systems manager, Dr. Mark Munro, in the o�ce at
the back of the Baker Lab. Your account will be created on the School's main
computers, tauon and mozart, plus any computers in your research group. Your
username will be the same on all computers (and historically is constructed from
your initials).

Whilst this manual will be written speci�cally for Baker lab users whose main ac-
counts are on tauon (Digital Alpha Station) andmozart (IBM RISC Workstation),
most of the material will be applicable to the other workstations on the School's
network.

The Baker Lab terminals are set out in the diagram overleaf. You can connect to
one of main computers from either a X-terminal or a Labtam terminal (the latter
are faster).

4

X(T)

Printer

PC

Mac

Front

L(A) L(A) L(A) L(A)

X(T) X(T) X(T) X(T)

X(T) X(T)

X(M)

X(M) X(M) X(M)

X(M)

X(T) = X-terminal to tauon

Key:

X(M) = X-terminal to mozart

L(A) = Labtam to any node

L(A)

As far as your account and �le system is concerned, logging into tauon or mozart
is essentially identical: i.e. mozart accesses the �les on tauon by default. In terms
of speed tauon is about 2-3 times faster than mozart. Although you will initially
log onto either a tauon or mozart session to begin with, it is a simple matter to
bring up a window for any other computer on the system, so you are not restricted
to the computer designated by that particular terminal.

Users should be reminded of the following simple rules:

1. Your computer account is to be used by you and no one else but you. Do not
give your password to any one else.

2. Choose your password carefully. Try to make it as cryptic as possible while
still being able to remember it. If your password is simple or obvious then
your security and the security of the whole system is compromised.

3. Do not go snooping around other people's accounts. Respect their privacy.

4. No material of an obscene nature is permitted on the system.

5. Treat ALL equipment in the lab with respect. Do not bring food or drink into
the Baker Lab.

5

6. Try to be as quiet as possible. People congregating around a single X-terminal
tend to make a lot of noise and distract others from working.

1.2. Logging in

The �rst requirement of any computing session is to login to tauon or mozart by
entering your username and your password. Use the following procedure (depending
on which type of terminal you are at):

1. Find a Labtam or X terminal (if Labtam choose a node to login to)

2. Make sure the mouse pointer is located over the login box.

3. At the Login prompt, type your username and password.

Tauon login

After typing your username and password correctly the Common Desktop Environ-
ment (CDE) will automatically start { this is the default desktop for the Digital
Alpha Station. The CDE is a fairly straightforward windows system based on the
mouse and has ample online help available.

Mozart login

Once you have performed a valid login sequence, the Message of the Day is displayed
on the screen - make sure you read it as it may contain important information. Click
a mouse button or press any key to start the X Window system and the OSF/Motif
Window manager.

Several windows should now appear on your screen including helpful X clients like
xclock.

You have successfully performed a login sequence and started the Motif Window
manager.

1.3. Logging out

Tauon log out

To log out click on the small exit box on the command window at the bottom of
the screen.

6

Mozart log out

To logout, move the cursor to a free space in the background root window. Press
mouse button 3 (right hand side) in this root window and hold it down { the root
menu window should now appear. With button 3 still pressed, drag the cursor
down till End Session is selected, move the cursor to ok and release the button.
A login window should now appear identical to the one you logged in on. You have
successfully logged out.

7

2. BASICS OF UNIX

Unix is an operating system which allows many users to access the resources of
a computer or network simultaneously. Although the user interface can appear
unfriendly to begin with, it can be quickly customised to match the needs of each
user, making it a
exible and powerful system. Conceptually the UNIX operating
system can be divided into three parts. The kernel does the actual work, speaking
directly to the computer and dealing with the allocation of computing resources as
it carries out various tasks. The shell is the interface between the kernel and the
user. The shell accepts input from the user, interprets this input, and relays it to the
kernel. The utility programs or \commands" allow you to ask the shell to carry out
certain tasks, for instance, to display, print, copy, move, search, delete, or otherwise
manipulate �les. Some of the more common commands are described in this section
- a more comprehensive list can be found in the glossary at the end of this manual
and in the references cited.

2.1. The shell

The shell is a utility which processes your commands, relaying this information to
the kernel which then carries out the required task. Several di�erent customised
shells exist, so that users can vary their interface with the computer if desired.
Although all the shells interface with the same UNIX kernel, your UNIX account
will behave di�erently depending upon which shell you are running.

The shells can be distinguished by their di�erent prompts. Your account will initially
be set up to run under csh (pronounced \c-shell") which has a % as the prompt.
Updating to more advanced shells is very simple and can be done at a later date.

2.2. Getting help in UNIX

If you know the name of the command you wish to use, then you can type the
following command (do not type the prompt, %)

% man <name of command>

This will bring up on-line information describing the function of this command, how
to call it up, the various options or \
ags" which can be used to alter its function,
and often some examples of its use. If this information takes up more than a page
it will be \piped" to the more utility, a program which displays information one

8

page at a time - hit the space-bar to read the next page. If you wish to know more
about how to use \more"(for instance how to scroll backwards), try \man more".
The information provided by the man command is often confusing, however it is a
good place to begin. If you're still stuck, or can't remember the exact name of the
command you want to �nd out about, consult the glossary at the end of these notes,
a text on UNIX, or ask someone else in the lab.

2.3. Customising your account

One thing which the shell interfaces all seem to share is the principle that \No
news is good news"(Sobell, 1984). Unlike menu-driven systems, they do not prompt
you for commands, and they give very little information about whether a task has
been carried out successfully. Making good use of the \man \ command to gain
information about the commands you are using can alleviate this to an extent. To
get around the problem of terse and not terribly mnemonic command names, you
can use the alias command, which allows you to make up your own name for a
command or sequence of commands (see section 2 2.4).

Each shell is also a programming language, in which you can construct \shell
scripts", which allow you to combine sequences of commands to carry out tasks
which you may require but which are not already included in the utility packages.
If you are interested in this aspect of Unix consult a text to �nd out more.

An important example of shell-scripts are the \startup" �les which contain scripts
which are run automatically each time you log into your account. These contain
important information such as the location of various important directories, and
other account defaults. The names of these \startup" �les always begin with a full-
stop, and are sometimes called \hidden" �les since they are not listed when you use
the \ls" command, even though they are always there. To list all �les including
hidden �les type \ls -a" at the prompt.Once you know how to use the vi or emacs
editors, you can use one of them to display and edit the contents of these �les, just
as you would any other �le. For instance, if you wanted to set up a permanent alias
for a command you used all the time, you would edit your .cshrc �le, adding to the
list of aliases which it contains (see also section 2 2.4).

WARNING Before making any more complex alterations to these �les, always
make a copy of the original, and enlist somebody who has done it before to help
when you �rst try it.

9

2.4. Shortcuts for typing in commands

It is useful to rename a complicated command which you might use often, to some-
thing shorter to type. For example the �le listing command ls -la could be aliased
to simply dir by entering the following command (again, do not type the prompt,
%)

% alias dir ls -la

The command dir now replaces the more cumbersome ls -la. Aliasing can be done
automatically everytime you log on or create a new window, by editing your .cshrc
�le which can contain, among other useful things, a list of aliases. There will be a
�le .cshrc already on your account and it will contain a default list of aliases which
should serve as a guide.

Unix has a \wildcard" pattern matching feature, useful for avoiding typing long
�lenames, or for performing the same action to a whole set of similar �les. An asterix
in a name is interpreted by Unix as a wild-card, standing in for some unknown set
of zero or more characters. For instance,

% ls file*.txt

will list only those �les in the working directory which have the form
\�le(something).txt", so you might get a list such as:

�le1.txt
�le2.txt
�lenames.txt
�leNew.txt

Typing ls *.tex will list all the �les with the extension \.tex", and so on. If for
some reason you wanted a printout of all the text �les in your directory, you could
type lpr *.txt.

A great deal of typing can be saved by using the history of commands. Typing the
history command will produce a list of the most recent commands entered in that
window. Any of these commands can be accessed (but not necessarily repeated) by
using the cursor keys to scroll through and around the list of previous commands,
or repeated by numerical reference { e.g. command #10 is repeated by typing

% !10

10

Alternatively, the last command starting with a particular letter(s) can be repeated
by typing the �rst letter(s) of that command before the exclamation mark, e.g. the
last vi command can be repeated by typing

% !vi

Be careful that you do not repeat an unwanted command which happens to start
with the same letter { you may have to specify several letters to avoid making costly
mistakes.

Another time saver is �le-completion: under csh the escape key will automatically
complete a half written �lename (if unambiguous).

11

3. THE UNIX FILE SYSTEM

The Unix �le system is a hierarchical one consisting of �les and directories. The
�le system is similar to other operating systems such as DOS or VMS but with
extensions for security and access permissions. A �le can be a program, data �le or
text �le. A directory is special type of �le which contains other �les. Directories
are extremely useful in keeping common �les grouped together rather as opposed to
having unrelated �les all mixed together.

3.1. The File System and basic UNIX commands

The typical �lesystem on a UNIX system is set out as follows:

/

dev/ tmp/etc/ home/ usr/

david/ janet/ mark/ susan/ peter/

 tex/ f77/

report.tex first.f

root directory

.cshrc

The directory separator character is /. All �le systems have a root or starting
point from which all directories branch. The root directory is known as /. In the
example above, home is a subdirectory of /, janet is a subdirectory of home, f77
is a subdirectory of janet and �rst.f is a �le residing in the f77 directory.

By convention, all systems operating with Unix generally have the following standard
directories:

/home containing the home directories of the various users on the system.

12

/bin and /usr/bin which contain most of the standard Unix programs. Conven-
tionally, the more common utilities are kept in /bin and more obscure commands
or programs speci�c to the installation are kept in /usr/bin.

/dev �les that represent devices, such as the printer, are kept here.

/etc contains miscellaneous �les, including the read-only passwd �le, which lists
all the users who have permission to use the system.

/tmp temporary �les.

Here are some useful UNIX commands to help you get around the �lesystem (use
the man command to get additional help on any of these and related commands).

Finding your location:

To �nd out where you are in a �lesystem type the following command (do not type
the prompt, %)

% pwd

For example if Janet in the above diagram was in her f77 directory the result of the
pwd command (print working directory) would be

% pwd

/home/janet/f77

%

Creating a directory:

To create a directory called papers for example, type the command

% mkdir papers

Moving around:

The cd command is used to move around the directory tree structure. For example
to move to the newly created directory called papers, type the command

% cd papers

To move up a directory type the command

13

% cd ..

To move to a directory using absolute path names, the command would be something
like

% cd /home/janet/f77

Listing �les and their properties:

To list the �les in the directory papers for example, type the command

% ls papers

(If you are already in the directory you need not type the directory name.)

More information about the �les, such as privileges, size in Kbytes and date of last
modi�cation, can be displayed by adding options to the ls command. For example
in the directory janet, the command

% ls -la

will produce the following output

drwxr-xr-x 3 janet theory 512 Dec 22 18:40 ./

drwxr-xr-x 3 janet theory 512 Dec 22 18:40 ../

-rwxr-xr-x 2 janet theory 4539 Nov 6 09:29 .cshrc*

drwxr-xr-x 2 janet theory 1024 Dec 3 03:00 f77/

drwxr-xr-x 2 janet theory 1024 Dec 4 02:00 tex/

The information in the �rst ten columns, for example drwxr-xr-x, corresponds
to the type of �le and its access privileges. The d in the �rst column indicates a
directory. The �rst series of privileges rwx indicates that the owner has read, write
and execute privileges to that �le. The second series r-x indicates that members
of the same group (in this case the theory group) have read and execute privileges
only. The third series r-x indicates that all other users of the system also have read
and execute privileges only. Privileges can be changed using chmod (careful you
retain your user privileges!).

Creating and editing �les:

To create an empty �le called my�le, type the command

14

% touch myfile

To write text to a �le (new or old) use the vi editor (see the attached notes on the
vi editior) by typing the command

% vi myfile

The touch command can be bypassed by the vi command.

Typing out a �le:

The contents of a �le can be displayed to the screen using the more command,

% more myfile

The spacebar scrolls through one screen at a time, whilst the enter key scrolls one
line at a time.

Copying �les:

To make a copy of a �le use the cp command.

% cp file1 file2

The above command assumes that a �le called �le1 exists and makes an identical
copy of this �le and calls it �le2.

Deleting �les and directories:

To delete a �le use the rm command.

% rm file1

This command completely removes the �le called �le1 from the �le system. Be
careful of this command as it can be dangerous. Your account has been set up so
that the rm command asks for con�rmation before deleting the �le. To delete a
directory there is a special command

% rmdir mydir

15

which will delete the directory mydir if and only if the directory is empty and
contains no �les.

Renaming �les:

To rename a �le use the mv command.

% mv file1 file2

This command renames the �le called �le1 to a �le called �le2. This command has
a special meaning if a �le is moved between directories

% mv file1 mydir/file2

This command copies the �le �le1 to the directorymydir, renames it to �le2, then
deletes the �le �le1 (ie. the �le is moved!) .

3.2. Printing

To print a �le using the bakerps printer in the Baker Lab the �le is usually in
postscript format. To print a �le already in postscript format (e.g. the �le pa-
per.ps) the command is

% lpr -h -P bakerps paper.ps

The option -h removes the header page which is of no practical use and wastes paper.
To save paper you can print double sided using the command

% lpr -h -P bakerps-duplex paper.ps

In order to print a plain text �le (e.g. paper.txt) it must �rst be converted to
postscript. This is easily done using the psf command.

% psf paper.txt > paper.ps

The text �le paper.txt has been converted to a postscript �le and the output of
the psf command has been directed to a �le called paper.ps and can be printed
using the qpr command. Alternatively the text �le can be printed in one command
using a pipe as follows.

16

% psf paper.txt | lpr -h -P bakerps

The output of the psf command is \piped" into the qpr command.

The status of a printing job can be checked using the lpq command.

3.3. Copying and pasting with the mouse

The mouse buttons allow you to copy and paste text on the screen, either in line
mode (UNIX commands etc) or when editing in vi. Dragging the mouse while
holding the left button down copies the text. Pasting at the cursor is done by
pressing the middle button.

17

4. THE VI EDITOR

There are several editors available on the UNIX system (e.g. vi, emacs, xedit and
axe). Here we will concentrate on the vi editor.

Suggested reading: \Introduction to the UNIX Operating System", by V.Y. Hansper
(copies available in the Baker Lab)

To edit a �le (e.g. the �le �rst.f) using vi the command is

% vi first.f

Moving around the �le:

The cursor keys will allow you to move around the �le when you are not in insert
mode. Some other commands are:

w ! move forward one word.
b ! move backward one word.
$! move to end of the line.
shift g ! go to end of �le.
:20 ! go to line 20.

Changing text:

i ! insert at the cursor.
esc key ! escape from insert mode.
o ! insert below current line.
dd ! delete line at cursor.
cw ! change word at the cursor.
dw ! delete word at the cursor.
r ! replace character.
yy ! yank the line of text at the cursor.
p ! paste yanked lines below cursor.
shift j ! join next line to end of current line.

Saving changes, quitting and �le handling:

shift zz ! exit vi session saving changes.
:q! ! quit vi session without saving changes.
:w! ! save the �le but stay in vi session.
:r letter.tex ! read in �le letter.tex (give full pathname if it is not in the working
directory).

18

Searching, substitution and miscellaneous:

/string ! �nd the next occurrence of the word \string".
n ! repeat the last �nd command.
:%s/string1/string2/gc! substitute string2 for string1 globally (option g) and con-
�rm each substitution (option c).
. ! repeat the last modi�cation.

Note that you can specify multiple actions: i.e. 3dd deletes three lines starting
from the cursor position, 5yy yanks �ve lines from the cursor position, 10w moves
forward by ten words, etc.

The .exrc �le has de�ned function keys F1 to F4 as a fast cut, copy and paste
facility. The speci�c functions are

F1 ! mark start of cut or copy.

F2 ! cut lines from start mark to the cursor line.

F3 ! copy lines from start mark to the cursor line.

F4 ! paste lines after cursor line.

These function keys are more convenient than using the mouse or the yank and put
commands.

19

5. THE EMACS EDITOR

emacs is a powerful and ubiquitous editor. For example, you can compile FORTRAN,
run LaTeX on your documents, ftp �les, do email, compress and uncompress, tar
and untar �les, and many more things, all from within emacs. However, �ve minutes
is enough to learn the essential. It works from any terminal, and is menu-driven
when run in an X window.

Starting and quitting emacs

To start emacs:

emacs <filename> &

(the character & at the end of the line indicates that the job will be run in back-
ground) or alternately just:

emacs &

and then type away (or input a �le; see below). emacs can also be run within an
existing xterm window:

emacs -nw

where -nw means \no window".

In emacs, anything you type will go into your document/�le/program, unless you
use the Ctrl key or Alt . These give you access to commands, for example C-f

which means hold down the Ctrl key, then tap the f, then release the Ctrl key.
M-v means \Meta"-v, where the Meta key is labeled Alt on most keyboards. If your
keyboard doesn't have an Alt key, use the Esc key (don't hold it down), then the v.

To exit emacs: C-x C-c

Note that you will be prompted if any �les need to be saved.

Moving around

You can use the arrow keys, but you'll be better o� using the keys right under your
�ngers:

20

C-f forward

C-b backward

C-n next line
C-p previous line
C-a beginning of line
C-e end of line
C-v one screen forward
M-v one screen backward

Undo

C-u undo emacs allows you to undo things in�nitely.

Files

C-x C-f file open you will be prompted to enter a �lename
C-x i insert file you will be prompted to enter a �lename
C-x C-s save file

A useful \�le" to open is a remote ftp site. As in, C-x C-f //ftp@tauon:/ which
will open tauon.

Directories

You can open a directory too { and then open �les by moving the cursor to the �le,
then hitting f. Other things you can do when editing a directory:

f file open

m mark mark multiple �les, then copy/delete/etc.
u unmark

d delete

C copy

R rename (move)
Z compress/uncompress
+ add new directory
h help to see many more options

Delete

C-d delete forward
C-h or Backspace delete backward
C-k kill to end of line
C-w wipe (region; see Marking, below)
C-y yank back last thing deleted

21

Mark (cutting and pasting)

C-@ or C-SPC mark

Here SPC means \space". Once you have marked a point, you then move your cursor
somewhere else and for example:

C-w wipe (cut)
M-w copy like wipe but leaves existing text
C-y yank (paste)

When you wipe a block of text, it is copied into another bu�er (called the kill

bu�er), so you can then yank it back into your text somewhere else. You can yank
back multiple times.

Search and Replace

C-s search forward
C-r reverse search
M-% search and replace emacs prompts for input

Rectangles

emacs allows editing of rectangular regions. This is particularly useful for deleting
columns of numbers. Mark the top left of the rectangular region, then move the
cursor to the bottom right, and:

C-x r k kill delete rectangular region
C-x r y yank paste rectangular region back
M-x clear-rectangle replace region with spaces

Keyboard Macros

Very simple macros can be quite useful:

C-x (start recording macro
C-x) �nish recording macro
C-x e execute recorded macro

22

6. PROGRAMMING IN FORTRAN

Most computer programs can usually be broken up into three distinct parts: input,
operation (e.g. calculations) and output. In these notes, as a quick introduction
to the fortran language, a template program will be presented which includes these
essential features. This document is designed not as a reliable reference to the
fortran language, but as a quick guide to getting started. For more detailed and
complete explanations you should refer to the fortran manual in the Baker lab (not
to be removed!).

Suggested reading: \Fortran 77", by L.P. Meissner and E.I. Organick.
\Problem Solving and Structured Programming in Fortran 77", by E.B. Ko�man
and F.L. Friedman.

6.1. Editing, compiling and running code

Consider a �le called �rst.f which contains the following lines of fortran.

c first program

implicit none

real*8 x,f,a

a = 2.0d2

write(*,*)' Code to calculate f = ((x * 200)/(x + 200))**2 '

write(*,*)' input x: '

read(*,*)x

f = (x*a/(x+a))**2

write(*,*)' f = ',f

end

This code takes a real number x and computes the function

f(x) =
�

200x

200 + x

�2

Note that the lines beginning with a \c" do not form part of the executable program
but allow for comments. All other lines begin at the �rst tab mark (8th column for
the X-terminals in the Baker Lab). A detailed description of the code follows.

23

Line by line description:

implicit none

This command guards against typographical errors - each variable has to be declared.
The debugging time saved by this device will become apparent as you gain more
experience.

real*8 x,f,a

The variables x,f,a are de�ned to be real numbers represented by 8 bytes (64 bits).
This is called double precision as opposed to single precision which corresponds
to 4 bytes. A double precision real number has 19 places. Variables can also be
declared as single or double precision integers. To avoid rounding errors one usually
works with double precision integers and real numbers. Variable names can be long
to help make the program easier to write and debug; e.g. integral of f can be a
variable name.

a = 2.0d2

Here the variable a is assigned the value 200.0; i.e 2.0d2 means the same as 2:0�102

for double precision numbers. For single precision numbers the same value would
be written as 2.0e2.

write(*,*)' Code to calculate f = ((x * 200)/(x + 200))**2 '

This is an example of how to write to the screen. The �rst argument of the write
command (i.e. where the �rst asterix is) speci�es where the data is to be written -
eg to a �le or to the screen. The asterix directs the data to be written to the screen.
The second argument speci�es how the data is to be written - in this case the asterix
means that the data is to be written in free format (the default setting). One can
direct the write command to output the data in a special format - i.e. specify the
number of decimal places of numbers, tabulate etc. (see the template program in
section 4.4). The data in this case is a character string.

write(*,*)' input x: '

Same idea as above. This line will appear below the previous line on the screen.

24

read(*,*)x

The variable x is read in from the screen (the default setting determined by the �rst
asterix) in free format (set by the second asterix). More variables could be read in
by separating with commas. One can modify the arguments so that the variable
is read from a �le and/or in a predetermined format (see the template program in
section 4.4).

f = (x*a/(x+a))**2

An example of basic mathematical operations. Note the use of parentheses.

write(*,*)' f = ',f

The variable f is written to the screen. Note that the character string contained in
the ' ' marks and the variable f are separated by a comma.

end

Indicates the end of the program.

Once this code has been entered and saved in the �le �rst.f, it can be compiled
using the command

% f77 -o first first.f

The f77 command checks the syntax of the fortran code and if correct creates an
executable �le called �rst (without the -o option the default executable �le is called
a.out). The program is executed (or run) by typing the name of the executable �le

% first

Code to calculate f = ((x * 200)/(x + 200))**2

input x:

6.2. Running code in background

An executable code �rst can be run in background using the command

25

% first < in > out &

The �le in is a text �le containing the input required for the code which is normally
entered from the screen. All the output from the code written to the screen in an
interactive run will be written instead to the �le out. The character & at the end
of the line indicates that the job will be run in background, leaving the terminal
free { i.e. you can logout and the job will continue to run.

The status of any job can be checked using the top command. To abort an inter-
active job hit Ctrl-C in that window.

To kill a batch job, �rst �nd the process identi�cation number (PID) using the ps
command (or top). For example

% ps -u janet

UID PID TTY TIME CMD

316 10297 pts/2 0:01 aixterm

316 11655 pts/6 0:03 vi

316 2735 pts/8 4:25 first

The batch job �rst can be stopped by typing kill followed by the PID number
corresponding to the job (in the above example this is 2735), i.e.

% kill 2735

If for some reason the job still continues then repeat the kill command with the
option -9 (this is a kill-with-extreme-prejudice command).

It is important to reduce to priority of your batch job in order that interactive users
are not unduly a�ected by background number crunching. The renice command
will alter the priority (0 is the highest, 20 is the lowest) of any given PID. For
example, the job �rst in the above example can be reduced from the default level 0
down to level 10 by typing

% renice 10 2735

The priority level of a batch job will show up on the top command output.

26

6.3. Optimization

Once a program is debugged and running correctly it can be compiled with the
optimizing option -O which will increase the speed by a factor of two in most cases.
The compiling command would look like

% f77 -O -o first first.f

6.4. Subprograms: functions and subroutines

Often one needs to evaluate a function many times or to repeat a certain number of
steps in a program. In order to make programs easier to organise one can use sub-
program units to perform these tasks which can be called from the main program.
The following code shows how this can be done for the simple case of the program
�rst.f.

c second program

implicit none

real*8 x,f,c

c = 2.0d2

write(*,*)' Code to calculate f = ((x * 200)/(x + 200))**2 '

write(*,*)' input x: '

read(*,*)x

call calculation(x,c,f)

write(*,*)' f = ',f

end

c------------------------------------

subroutine calculation(x,c,f)

implicit none

real*8 x,c,f,r

f = r(x,c)

return

end

c------------------------------------

double precision function r(x,c)

implicit none

real*8 x,c

r = (x*c/(x+c))**2

return

end

27

Line by line description:

call calculation(x,c,f)

This statement executes the lines contained in the subroutine calculation with
three arguments (i.e. variables that the subroutine requires as inputs or returns) x,
c and f. The value of the variables x and c have been set in the main program and
are used in the subroutine whereas the value of the variable f is set in the subroutine
and returned to the main program.

subroutine calculation(x,c,f)

The subroutine is a seperate program unit with variable declarations. The values
of the variables x and c are given in the arguments of the subroutine call from the
main program. In this case the value of f is set in the subroutine (via a function
call to r(x,c). The variables x and c remain unchanged. The return statement at
the end of the subroutine passes control back to the line in the main program after
the subroutine call as well as the values of the arguments at the point of return
statement.

real*8 x,f,c,r

The variable r representing the function to be evaluated in this subroutine has been
declared as double precision real. If a call to this function was made from the main
program, the same declaration for r would have to made at the start of that program.

f = r(x,c)

In this statement the double precision function r(x,c) is called, passing the variables
x and c to be used in the function subprogram to evaluate r. The variable f is set
to the value of r.

double precision function r(x,c)

The function r(x,c) is also a seperate program unit with variable declarations. The
function call returns a value for r which is treated as a variable in the main program.

28

6.5. Template program

The following program, template.f encompasses most of the basic fortran needed
for ordinary programming. The program itself is of no practical use, but is merely
intended as a template for building bigger and better code. It can be found in
/home/4thyear/template.f.

This code evaluates the function

f(x) =
a

1 + x
;�1 < x < 1

by power series approximation

a

1 + x
= af1� x+ x2 � x3 + x4 + : : :g

to increasing orders and compares with the `exact' answer (exact to double preci-
sion). Note the liberal use of documentation!

c template program

implicit none

real*8 x,sum(0:100),term(0:100),exact

real*8 cumulative_sum,abs_x,f,a

integer*4 i,max_exponent,exponent_last_term

common/some_variables/a

open(unit=1,file='template.out',status='unknown')

max_exponent = 100

a = 2.0d0

write(*,*)' Code to calculate f = a/(x + 1) by power series'

write(*,*)' where a has been set to ',a

c--

c -> input the number of terms in series

10 write(*,*)' input exponent of last term in series: '

read(*,*)exponent_last_term

c--

c -> check to see if exponent_last_term > max_exponent

if(exponent_last_term .gt. max_exponent) then

write(*,*)' last exponent too large, max is ',max_exponent

goto 10

end if

c--

c -> input the value of x using subroutine input

call input(x)

c--

c -> compute the exact value of f = a/(1 + x)

exact = f(x)

29

c--

c -> use a do loop to calculate terms in the

c series and store terms in the array term(i).

do 20 i = 0 , exponent_last_term , +1

term(i) = a*(-x)**i

20 continue

c -> add up terms and store cumulative sum in sum(i)

cumulative_sum = 0.0d0

do 30 i = 0 , exponent_last_term

cumulative_sum = cumulative_sum + term(i)

sum(i) = cumulative_sum

30 continue

c--

c -> output

write(1,*)' series expansion for f(x) = a/(1+x): x = ',x

write(*,*)' series expansion for f(x) = a/(1+x): x = ',x

do 40 i = 0 , exponent_last_term

write(1,50)i,term(i),sum(i),exact

write(*,50)i,term(i),sum(i),exact

50 format(' term #',i2,' : term = ',f8.6,

& ' : sum = ',f8.6,' : exact value = ',f8.6)

40 continue

c -> close output file and end

close(unit=1)

end

c--

double precision function f(x)

implicit none

real*8 x,a

common/some_variables/a

f = a/(1.0d0 + x)

return

end

c--

subroutine input(x)

implicit none

real*8 x,abs_x

10 write(*,*)' input x: '

read(*,*)x

abs_x = dabs(x)

c -> check to see if -1 < x < 1

if(abs_x.ge.1.0d0) then

write(*,*)' x out of range -1 < x < 1 : try again '

goto 10

end if

30

return

end

Line by line description:

real*8 x,sum(0:100),term(0:100),exact

In this declaration the variables sum and term are one dimensional arrays (vectors)
with indices ranging from 0 to 100. The array sum is composed of variables sum(0),
sum(1), sum(2),..., sum(100). For repetitive calculations one usually tries to
de�ne variables as arrays since these can be easily called in do-loops.

common/some_variables/a

This de�nes a common block of variables (just one variable a in this case). The
name of the common block is \some variables" (it could have been called anything)
to distinguish it if there were more common blocks. The variable a will now have
the same value in any sub-program unit (main program, function, subroutine etc)
which has this common block statement at the start. Note that the common block
statements must occur after the declaration of variables and before any executable
statement. The common block is a useful way of reducing the number of arguments
in function and subroutine calls.

open(unit=1,file='template.out',status='unknown')

The �le template.out has been opened for output and is used later on in the code.
The unit number allows the program to refer to this �le in a write statement. The
status indicates that the data is written to a new �le. Each time the program
is executed the contents of template.out will be written over. The status option
can have di�erent de�nitions on other systems so one should refer to the fortran
reference manual to be sure.

if(exponent_last_term .gt. max_exponent) then

write(*,*)' last exponent too large, max is ',max_exponent

goto 10

end if

If exponent last term>max exponent then the two lines contained before the
end if will be executed otherwise the program skips to the line after end if. Note

31

that there is a goto statement which passes control back to line 10 - i.e. if expo-
nent last term>max exponent then the program will require another value of
exponent last term. The complete set of simple logical operations are given by
(eq; lt; gt; le; ge; ne) corresponding to (=; <;>;�;�; 6=). More complicated logical
operations can be constructed by the inclusion of or and and in the statement. See
the fortran manual for a more complete description.

call input(x)

The value of the variable x is given by the subroutine input which asks for input
from screen and tests the value for the condition -1 < x < 1. Normally one would in-
clude this sort of input code in the main program, but here we put it in a subroutine,
merely as an example.

exact = f(x)

The exact value of the function f(x) is obtained by calling the double precision
function f(x).

do 20 i = 0 , exponent_last_term , +1

term(i) = a*(-x)**i

20 continue

In this do loop the loop variable i is increased from 0 to the value of expo-
nent last term in increments of +1 (one can leave the increment o� in this case
since the default is +1) and for each value of the loop variable, i, the lines contained
in the do loop, i.e. those before the end speci�ed as line 20, are executed.

write(1,*)' series expansion for f(x) = a/(1+x): x = ',x

write(*,*)' series expansion for f(x) = a/(1+x): x = ',x

In the �rst write statement the character string and variable x is written in free
format (indicated by the asterix in the second argument) to the �le speci�ed as unit
1 (in this case it is the �le template.out). The second statement writes the same
data to the screen in free format.

write(1,50)i,term(i),sum(i),exact

write(*,50)i,term(i),sum(i),exact

32

The variables i, term(i), sum(i) and exact are written to the the �le template.out
(�rst write statement) and to screen (second write statement) using the format
speci�ed by the format statement in line 50.

50 format(' term #',i2,' : term = ',f8.6,

& ' : sum = ',f8.6,' : exact value = ',f8.6)

The format statement gives control over the output of data. In this case we have
one line of output which starts with the character string term # followed by the
�rst variable in the write statement list, i.e. the variable i, which is written out as
an integer of 2 places as speci�ed by the argument i2 (the \i" meaning integer).
The remaining three double precision real variables term(i), sum(i) and exact are
in
oating point format f8.6 - specifying a total of 8 places including the decimal
point. See the fortran manual for a complete description. Note that since this format
statement was too long to contain on one line it was broken into two lines by the
use of the character & in column 5.

close(unit=1)

The �le speci�ed by unit 1 is closed.

double precision function f(x)

The subprogram unit to compute the function f(x).

subroutine input(x)

The subroutine which inputs x from the screen and checks the validity of the value
obtained.

abs_x = dabs(x)

This is an example of an intrinsic function. The intrinsic function dabs(x) �nds
the absolute value of a double precision number (as distinct from the intrinsic
function abs(x) �nds the absolute value of a single precision number). Other
intrinsic functions include dsin(x), dcos(x), dsqrt(x) etc. See the fortran language
manual for a list of intrinsic functions and their argument types.

The template program can be compiled and executed by the following commands:

% f77 -o template template.f

% template

The �le template.out will contain the output.

33

6.6. Debugging and checking fortran code

Once a program compiles and executes one must check that it is working correctly.
One must be able to test the numerical output of the program and �nd and correct
bugs in the code. To check and debug a program one must write out variable
values at various stages throughout the program execution and make sure the values
calculated and being used in the program are correct. This is hard and tedious
work, but it must be done thoroughly to avoid the disastrous situation of publishing
incorrect results due to a
awed program.

Whilst there are no easier strategies in general for debugging a program than writing
out variables and checking their values, there are facilities that make this job quicker
by avoiding the need to constantly insert write statements and recompile the code.
The debugging facility on UNIX used here is called dbx. It is invoked by compiling
the code with the option -g, i.e.

% f77 -g -o first first.f

To run and debug the program one then enters the debugging environment using
the dbx command:

% dbx first

A more advanced X windows version is xde for which the same compiler option -g
must �rst be used.

34

7. EDITING, COMPILING AND RUNNING C CODE

Consider a �le called �rst.c which contains the following lines of C:

/* first.c */

/* Purpose: Simple demo C program - input, calculate and output */

/* Author: R. Scholten */

/* Date: 6 July 1996 */

#include <stdio.h> /* include standard I/O function defns */

main ()

{

float x,f,c; /* define real-number variables */

c=2.0e2; /* initialise c=200 */

printf("Calculating f=((x*200/(x+200))**2\n");

printf("Enter x: ");

scanf("%f",&x); /* get x from keyboard */

f=(x*c/(x+c)); /* calculate term */

f=f*f; /* and square it */

printf("f = %f\n",f);

return 0; /* program ended OK */

}

This code takes a real number input, uses this to calculate something and displays
the result. The relationship between input and output is given by the algebraic
formula

f(x) =
�

200x

200 + x

�2

Line by line description

/* first.c */

/* Purpose: Simple demo C program - input, calculate and output */

/* Author: R. Scholten */

/* Date: 6 July 1996 */

All good programs should begin with a short comment section, including:

� program name

� program purpose

� author

35

� date

These lines are simply comments, intended to help you { and us { remember what
this code is for. In C, anything between /* and */ can be disregarded, even if the
/* and */ are on di�erent lines.

#include <stdio.h>

This is a compiler directive which means it's a statement to the compiler, not an
actual line of code. This example tells the compiler to include some information
about the standard input/output library. You should always include this line.

main()

The program is a function called main. All C programs will have a main function
somewhere, which is what will be executed when the program is run.

{

The left curly brace will have, somewhere later, a matching right curly brace }.
These braces mark out the extent of the function main.

float x,f,c; /* define real-number variables */

All variables must be declared. In this case, x, f, and c are de�ned as real numbers.
Names are case-sensitive, so x is not the same as X.

Also note the \;". The semicolon marks the end of the statement. In C, statements
(code instructions) can be split over several lines, or there can be many statements
on one line. The important separator is the semicolon.

Finally, note the comment on the same line. This would normally say something
useful about what the variables are for.

c=2.0e2; /* initialise c=200 */

This statement sets the initial value of the c variable to 2:0� 102, or 200.

printf("Calculating f=((x*200/(x+200))**2\n");

printf("Enter x: ");

These two similar statements print something on your screen. They are examples of
function calls. They are instructions to C to call a library function, called printf,
as de�ned in the standard input/output library speci�ed by <stdio.h>. The stu�
between the parentheses is a list of arguments which are passed on to the library

36

function. In this case, there is only one argument in each call { a string de�ned by
the double quotation marks, "".

The �rst string includes some straight text, and \n which tells C to output a newline
after the message. Note that the second printf statement does not include the \n
and so after displaying the message, the screen cursor will be just after the colon,
waiting for your input.

scanf("%f",&x); /* get x from keyboard */

The scanf command is used to input something from the user (to \scan" the key-
board). The �rst argument, %f, is again a conversion speci�cation. It instructs the
scanf function to look for a
oating point number.

The second argument is almost the name of the variable in which the entered
number is to be stored. However, note the & ampersand. This means that scanf
is not passed the value of x but rather the address; that is, the memory location
associated with the x variable. Hence, when scanf gets the
oating point (real)
number, it knows where to store the result.

Forgetting the & is a very common error!

f=(x*c/(x+c)); /* calculate term */

f=f*f; /* and square it */

Ah ha! Now the program is doing something. This statement calculates the term in
parentheses in our equation and sets the value of the f variable to the result. The
second line calculates the square.

printf("f = %f\n",f);

Finally, the program outputs the result. Note the %f which is a format speci�erwhich
means \output number as a
oating point". The value of the second argument to
printf, that is, variable f, is displayed assuming f is a
oating point.

The
oating point format speci�er is more generally of the form %W.Df where the
width W and decimal places D are speci�ed, in this case 10 characters wide and 6
digits after the decimal place. The %d speci�er is used for integers; others can be
found by using the Unix man page for printf (try man printf at your console).

return 0;

At the end of every C function (in this case main) you can return a value. Returning
zero indicates that everything was OK. It's not strictly necessary in this case, but
good programming practice. You might use return -1 when there is an error.

}

37

Here's the matching right curly brace that marks the end of the main function {
and the end of the program.

7.1. Compilation

Once the program has been entered and saved to a �le (e.g. first.c) it can be
compiled. This is readily done with:

$ cc first.c -o first -lm

The -lm isn't strictly necessary here, but will be for later programs that use math
library functions such as exp, pow and so on.

If your program is bug-free, you should now �nd an executable program named first

in your directory, for example:

$ ls -l

-rwxr-x--x 1 scholten pfg 24064 Jul 7 19:03 first

-rw-r--r-- 1 scholten pfg 823 Jul 7 19:03 first.c

This listing shows the executable �le first and the C source �le first.c. You can
execute the program just by typing in the name, first:

$ first

Calculating f=((x*200/(x+200))**2

Enter x: 100

f = 4444.444336

$

7.2. Functions

The program above made good use of C's ability to compartmentalise tasks into
discrete functions. The program itself, main, is a function, and it called two other
functions, printf and scanf. You can also de�ne your own functions. Here's how
we might rewrite the above program to make use of functions.

/* second.c */

/* Purpose: Demonstrate functions in C */

/* Author: R. Scholten and L. Hollenberg */

38

/* Date: 7 July 1996 */

#include <stdio.h> /* include standard I/O function defns */

float input(float c); /* function declarations */

float r(float x, float c);

main ()

{

float x,f,c; /* define real-number variables */

c=2.0e2; /* initial c=200 */

x=input(c); /* go ask user for x, for given c */

f=r(x,c); /* calculate function, given x and c */

printf("f = %f\n",f);

return 0; /* program ended OK */

}

float input(float c)

/* display value of c; input value and return */

{

float temp; /* local storage */

printf("Calculating f=((x*200)/(x+200))**2\n");

printf("Enter x: ");

scanf("%f",&temp); /* get x from keyboard */

return temp;

}

float r(float x, float c)

/* given x and c, calculate (x*200/(x+200)) */

{

float temp;

temp=(x*c/(x+c)); /* calculate term */

return temp*temp; /* return square */

}

Line by line description
The �rst lines are similar to those in the previous example. Then we �nd:

float input(float c); /* function declarations */

float r(float x, float c);

These are function declarations. They don't actually do anything, except tell the C
compiler what's coming. They warn of two functions, input and r, both of which
return float
oating-point numbers. input will require one
oat argument (called
c, although the name is completely arbitrary here); r wants two arguments, x and

39

c.

These declarations are important, because when you use these functions, the C
compiler will know how you should use them. It will know how many and what type
of arguments, and what type of value is returned. This is important for debugging.

Several lines of code are again the same, and then:

x=input(c); /* go ask user for x, for given c */

f=r(x,c); /* calculate function, given x and c */

These are the function calls. The �rst sets x to be the value returned by function
input when input is given as its argument the value of c. Thus we have \hidden"
the printf and scanf statements. The second function call is similar.

Note that if we want to change the form of the function, we need only change the r
function; the rest of the program would not change at all.

float input(float c)

/* display value of c; input value and return */

{

This is the start of the input function. Note the comment at the beginning so that
the reader knows what the function is supposed to do. In this case it is trivial, but
that is unfortunately not generally true.

float temp; /* local storage */

printf("Calculating f=((x*200)/(x+200))**2\n");

printf("Enter x: ");

scanf("%f",&temp); /* get x from keyboard */

Here is the function itself. The float temp; declaration de�nes a local variable
called temp. Anything done to change the value of temp within this function will
not a�ect any other variable called temp in another function, including main.

return temp;

}

Once temp is set to the value entered from the keyboard, it is returned as the value
of the function input.

Function r is very much the same.

40

7.3. Program
ow

Very few programs are so straightforward. One of the most powerful aspects of
computers is their ability to execute some instructions many times over in a loop.
For example, to take the sum of a series of numbers.

It is also necessary to be able to change the order of execution, depending on some
critical decision. For example, you might want to take the square root of a number,
but not if it is negative.

More complex data structures are also needed, beyond the
oating-point numbers
introduced so far. These include integers, double-precision
oating points, and ar-
rays.

Here's a typical example program that encompasses many of the basic building
blocks needed to e�ciently program in C. These include if/then/else, do-while-
loops, and for-loops.

This program should form a good template for your own C programs; hence it is
called template.c. It evaluates the function

f(x) =
a

1 + x
� 1 < x < 1

by power series approximation

a

1 + x
= af1� x+ x2 � x3 + x4 + : : :g

to increasing orders and compares with the `exact' answer (exact to double preci-
sion).

/* template.c */

/* Purpose: Illustrate C conditional program flow, arrays */

/* Author: R. Scholten */

/* Date: 7 July 1996 */

#include <stdio.h> /* include standard I/O statement defns */

#include <math.h> /* include math (pow and fabs) */

double input(); /* function declarations */

double f(float a, float x);

main ()

{

double x, /* x=scratch variable */

sum[101], /* 101-element array, sum[0] to sum[100] */

term[101],

41

exact, /* exact result */

cumulative_sum, /* etc etc etc */

a;

long int i,j,k, /* similar comments */

max_exponent,

exponent_last_term,

nogood; /* in C zero implies false, while non-zero is true */

char outname[80]="template.out"; /* name of output file */

FILE *outfile; /* pointer to output file */

/* First we open the file which will hold our results */

if ((outfile=fopen(outname,"w")) == NULL) {

printf("Life is bad. Couldn't open file %s.\n",outname);

return -1;

}

max_exponent = 100;

a = 2.0e0;

printf("Code to calculate f = a/(x + 1) by power series,");

printf(" where a has been set to %0.2f\n",a);

/*--*/

/* input the number of terms in series */

/*--*/

do {

printf("Input exponent of last term in series: ");

scanf("%ld",&exponent_last_term);

/*---*/

/* check to see if exponent_last_term > max_exponent */

/*---*/

if (nogood=(exponent_last_term > max_exponent))

printf("Last exponent too large, max is %d\n",max_exponent);

} while (nogood);

x=input(); /* input value of x using function "input" */

exact=f(a,x); /* compute exact value of f=a/(1+x) */

printf("Exact value for f(x) = a/(1+x) (a=%f, x=%f) is %f\n",a,x,exact);

/*--*/

/* use a for loop to calculate terms in the */

/* series and store terms in the array term[i] */

/*--*/

42

for (i = 0; i<=exponent_last_term; i++) {

term[i]= a*pow(-x,(double)i); /* Note the "cast" i.e. (double)i */

}

/* add up terms and store cumulative sum in sum(i) */

cumulative_sum = 0.0e0;

for (i = 0; i<=exponent_last_term; i++) {

cumulative_sum = cumulative_sum + term[i];

sum[i] = cumulative_sum;

}

/* output results to screen and to file */

fprintf(outfile, "Series expansion for f(x) = a/(1+x): a=%f, x=%f\n",a,x);

printf("Series expansion for f(x) = a/(1+x): a=%f, x=%f\n",a,x);

for (i=0; i<=exponent_last_term; i++) {

fprintf(outfile,"term # %2d term = %10.6f sum = %10.6f exact=%10.6f\n",

i,term[i],sum[i],exact);

printf("term # %2d term = %10.6f sum = %10.6f exact=%10.6f\n",

i,term[i],sum[i],exact);

}

/* close file and end */

fclose(outfile);

return 0;

}

/*--*/

/* f(a,x) */

/* Purpose: calculate a/(1+x) */

/*--*/

double f(float a, float x)

{

double temp;

temp=a/(1.0+x);

return temp;

}

/*--*/

/* input() */

/* Purpose: input a floating-point number x and check -1 < x < 1 */

/*--*/

double input()

{

double x,abs_x;

int nogood;

43

/* check for valid input */

do {

printf("Input x: ");

scanf("%lf",&x); /* note the "l" for "long" float (i.e. double) */

abs_x = fabs(x);

if (nogood=(abs_x >= 1.0e0))

printf("x out of range -1 < x < 1 : try again\n");

} while (nogood);

return x;

}

Line by line description
Note the extensive use of comments to describe what the program, and each part of
the program, is doing. Liberal use of such documentation is em essential.

#include <stdio.h> /* include standard I/O statement defns */

#include <math.h> /* include math (pow and fabs) */

Note that in addition to <stdio.h> we also include <math.h>. The <math.h> header
describes several mathematical functions that are needed, in particular pow(x,y)
and fabs(x) which calculate xy and jxj respectively.

double x, /* x=scratch variable */

This line is the �rst of several which declare some variables as type double. The
exact de�nition of double is machine-dependent, but generally means an 8-byte
number with about 13 decimal places of precision.

sum[101], /* 101-element array, sum[0] to sum[100] */

term[101],

These lines continue the double variable declarations. In this case, sum and term are
one-dimensional arrays (vectors), with 101 elements (each double). These elements
are accessed via indices ranging from 0 to 100, thus the array sum is composed of
sum[0], sum[1],...,sum[100] (not sum[101]).

char outname[80]="template.out"; /* name of output file */

FILE *outfile; /* pointer to output file */

The �rst line here de�nes another array, this time of type char, which is used to
hold a string of characters. It is pre-assigned the value "template.out" which is
the name of an output �le which is used later. The FILE *outfile; line de�nes a
pointer to a �le, which is opened for writing by the next few lines:

if ((outfile=fopen(outname,"w")) == NULL) {

44

printf("Life is bad. Couldn't open file %s.\n",outname);

return -1;

}

Here the pointer outfile is set to point to the �le opened by the function
fopen. fopen is passed the name (template.out) and "w" which means \open
template.out for writing". The "w" means that any existing �le template.out

will be written over. fopen can also be used to "a" (append to existing �le) or "r"
(read).

If fopen sets the pointer outfile to the special value NULL then fopen was unable to
open that �le (perhaps because the disk was full). The program outputs a message
to that e�ect, and quits.

do {

printf("Input exponent of last term in series: ");

scanf("%ld",&exponent_last_term);

if (nogood=(exponent_last_term > max_exponent))

printf("Last exponent too large, max is %d\n",max_exponent);

} while (nogood);

This construct is a do {} while loop. The code between the two braces {} will
be executed over and over again until the variable nogood is \false". nogood is
set to (exponent_last_term > max_exponent); that is, if exponent_last_term is
greater than max_exponent then nogood will be true, in which case an error message
is displayed and the do {} while loop is re-executed.

The conditional operator (>) can be replaced with other tests such as
==,!=,<,>,<=,>=. Beware the \equal to" test which is a double ==! More com-
plicated tests can include && (and), and || (or).

scanf("%ld",&exponent_last_term);

It is worth commenting on this line especially. exponent_last_term was declared
as a long int and so when inputting a value from the keyboard, scanf must be
told to convert the key entries to a long int. This leads to the

x=input(); /* input value of x using function "input" */

exact=f(a,x); /* compute exact value of f=a/(1+x) */

The input() function is called to input a value; note there are no arguments. The
exact value (to double precision) is calculated by the function f(a,x) using the
input value of x.

for (i = 0; i<=exponent_last_term; i++) {

term[i]= a*pow(-x,(double)i); /* Note the "cast" i.e. (double)i */

45

}

This is an example of a for material between the braces {} (the body) is executed
while the loop variable i � exponent_last_term. i is increased by one after the
body is executed, as speci�ed by the i++. Other examples are i-- and i=i+7 which
count down by one, and count up by 7, per loop iteration. i can also be changed in
the body but this is not good programming practice because mistakes can be hard
to �nd.

The body includes a couple of oddities. First of all, to calculate xy in C you need to
call a function, in this case pow(x,y). Now, pow is a double precision function, and
it expects double precision arguments for x and y. However, in this example the
exponent y is an integer, i. This is converted or cast into a double precision
oating
point with the (double) type cast. Similar things can be done with (float), (int)
and so on.

fprintf(outfile,"term # %2d term = %10.6f sum = %10.6f exact=%10.6f\n",

i,term[i],sum[i],exact);

printf("term # %2d term = %10.6f sum = %10.6f exact=%10.6f\n",

i,term[i],sum[i],exact);

The printf statement has a cousin, fprintf, which prints to a �le. In this
case, the �rst argument is the pointer to the output �le which was opened earlier,
template.out.

fclose(outfile);

All open �les should be explicitly closed before the program �nishes.

abs_x = fabs(x);

The last remaining code of note call to the fabs function, which calculates the
(double precision) absolute value of its (double precision) argument. There are
many similar mathematical functions which can be found in a C manual. The Unix
man command can be a valuable aid with such things, for example man fabs which
not only describes the fabs function but also many similar functions, with references
to other related material that can be obtained online.

46

8. PV-WAVE: GRAPHICAL DATA ANALYSIS

PV-WAVE, or just WAVE, is a powerful commercial program for analysing data,
used by advanced research groups around the world. It can do simple 2D plots
or sophisticated �ve-dimensional plots, and includes image processing, the IMSL
numerical libraries, statistical and mapping packages, signal processing libraries,
widgets and many others.

While powerful, it can also be reasonably straightforward to use. Some very simple
examples of how to use it are included below; use the built-in help to �nd out more
(including a tutorial).

To start WAVE, just enter the command:

% wave

This assumes your environment variables have been set correctly; see section 8 8.6.

To close the program, just type:

WAVE> quit

A demonstration program, written to provide an overview of WAVE abilities, can be
run by entering:

WAVE> demo

WAVE has built-in online hypertext Help:

WAVE> help

and in fact the complete set of manuals, including the tutorial manual, can be
accessed online with:

WAVE> help,/doc

WAVE is interactive, so commands can be entered directly, and the language is very
much like fortran. Often, you will wish to enter a long series of commands.
Usually, rather than entering them directly, it is best to treat WAVE in the same way
that fortran is used: that is, by editing a \program" outside WAVE which is then
compiled and run inside WAVE.

47

Here's an example which reads a �le of (x,y) data pairs, and plots the points
with straight lines between them. In your text editor of choice, edit a �le called
simp_plot.pro. Type in the lines below (case is not important), and save it.

; WAVE program to read data file with two columns

; of numbers and plot as x,y graph.

PRO simp_plot

fname=' ' ; name of data file

print,'Enter filename'

read,fname ; get filename from user

status = dc_read_free(fname, x, y, /Column) ; read data

plot,x,y,title='File: '+fname, xtitle='x', ytitle='y', psym=-4

end

To run this script, start WAVE and compile it with the command:

WAVE> .run filename.pro

where filename.pro is the name of the �le which has the WAVE code. Make sure
you are running WAVE from the directory in which the �le is saved! Once that is
done, you can run the program by typing the name of the procedure:

WAVE> simp_plot

The output might look like:

There are many options to the plot command, and many other useful commands.
We look at those options after some details on compiling and running WAVE code.

48

8.1. Compiling and executing

WAVE is rather like fortran in that you need to �rst compile your code, then run it.
However, WAVE can also simply interpret your code (compile a line, run it, compile
a line, run it, etc.). For most applications, writing a short program and compiling
it is the best way to go.

Compiling: .run

When you type commands at the WAVE prompt, these commands are interpreted
and executed immediately. When you \run" an external program, for example
.run progname.pro, those commands are also interpreted and executed immedi-
ately.

However, if your external program is actually a procedure, starting with a PRO dec-
laration, then the procedure is compiled but not executed. The procedure becomes
another new command that WAVE will then understand. To execute it, you must call
the procedure by typing its name, just as you type the plot command name and
so on. Your �le can include multiple procedures and functions, all of which will be
compiled when you .run the �le, and then available as new commands within WAVE.
You need to re-compile them very time you re-start WAVE but you can do this with
your wavestartup program (see section 8 8.6).

Suppose you have a procedure that looks like:

PRO myplot,x,y

; procedure to plot stuff my way

plot,x,y,title='myplot'

END

which is saved in a �le called myplot.pro. You can compile this and execute it as
follows:

WAVE> .run myplot

WAVE> myplot,x,y

WAVE> myplot,a,b

WAVE> myplot,c,d

When errors occur: retall

If WAVE �nds an error when compiling or executing your code, it is useful to use the
command retall. This tells WAVE to give up and start again.

49

Command-line editing: the cursor keys

You can use the up and down arrow keys to re-enter previous commands, and the
left and right arrow keys to edit those commands.

Comments and long lines: ; and $

Comments in WAVE programs are pre�xed with the semicolon ; which can occur
anywhere on a line (so anything following a ; is ignored). Long commands can be
split using the $. Here's an example:

; this line is an example of a comment

plot,x,y,title='Hubble expansion',xtitle='Distance', $

ytitle='Expansion' ; extension of previous command

Stopping wave temporarily: Ctrl-Z and fg

It can be very useful to stop WAVE temporarily, so you can type a few Unix com-
mands (for example, to print a �le, or display it with ghostscript). Use Ctrl-Z to
temporarily get back to Unix, and the Unix command fg to get back to WAVE.

save,/all

If you're in the middle of a complicated WAVE session, and you want to save everything
and return to it later, you can use the save,/all command. For example:

WAVE> save,/all,filename='mysave.dat' ; save all variables

-- User exits and then enters a new PV-WAVE session --

WAVE> restore,'mysave.dat' ; restore all saved variables

8.2. Printing with WAVE

WAVE normally draws on the screen. To print, it is �rst necessary to tell WAVE to
draw to a Postscript �le. Once the plotting is done, the Postscript device is closed,
and the �le can be printed.

Note that it is essential that you �rst plot your stu� on-screen. Then tell WAVE to
send future drawing commands to a Postscript �le, then tell WAVE to close that �le
and return to drawing on-screen. Here's an example:

WAVE> plot,x,y ; it is ESSENTIAL that you first

; plot it on-screen!!

50

WAVE> postscript,'myplot.ps' ; redirect output to file 'myplot.ps'

WAVE> plot,x,y ; normally this would draw on-screen

WAVE> postscript,/close ; close the Postscript file

A reminder: IT IS ESSENTIAL THAT YOU FIRST PLOT ON-SCREEN!

The postscript command has some other options to change the size of the plot
and so on. Help on these is available by typing:

WAVE> postscript,/help

Once your plot has been output to the �le, myplot.ps, it can be printed or viewed
with the usual Unix commands. Return to Unix with Ctrl-Z, and then:

% gs myplot.ps

or from within WAVE,

WAVE> spawn,'gs myplot.ps'

If satisfactory, it can be printed:

WAVE> spawn,'qpr myplot.ps'

8.3. Reading data

Data is normally read from text �les which are formatted into columns. This is
easily done with the dc_read_free command. To read three columns, for example,
try:

fname='myfile.dat''

status=dc_read_free(fname,x,y,dy,/column)

ploterr,x,y,dy

Simply add more variable names if there are more columns. Note that WAVE likes
to use vectors and matrices. In this example, x, y and dy will be vectors. WAVE

knows that when you say ploterr,x,y,dy you mean plot each of the elements

51

in the vectors. You can add, subtract, multiply vectors and matrices with simple
commands, for example z=x+y, where z will be a vector result.

Reading image data

Various image formats can be read. The most e�cient is raw 8-bit binary data, one
byte per pixel. For example, to read a 256� 256 image and display it in greyscale:

fname='myfile.raw''

image=bytarr(256,256)

openr,1,fname

readu,1,image

close,1

tvscl,image

Standard image formats can also be read, for example gif �les:

test=image_read('test.gif')

img=test('pixels')

tvscl,img

test will be an associative array with all sorts of good stu�; for more info on test,
try:

WAVE> info,test,/full

8.4. 2D plots with WAVE

The plot command and its variants have many many options. For convenience, a
few are detailed here; more info can be found with the WAVE help command.

Choosing your axes

plot can be used with one parameter (e.g. plot,y) or with both coordinates
(plot,x,y). The plot command can be replaced with the log/lin variations plot_io
(log for y axis), plot_oi (log for x axis) and plot_oo (both log).

Adding titles

These options are used to specify the title and axes labels for the plot. For example,

WAVE> plot,x,y,title='Hubble expansion',xtitle='Distance',ytitle='Expansion'

52

Modifying the range of your axes

Normally WAVE will pick nice axis limits, but if you want more control, you can
choose speci�c ranges, for example:

WAVE> plot,x,y,xrange=[-1.5,3],xstyle=1

Here the xstyle=1 option tells WAVE to use exactly [-1.5,3] rather than rounding
it of to [-2,3].

Plotting one set of data over another

To plot another set of data on the same set of axes as a previous set, use the
\over-plot" command:

WAVE> plot,x,y ; first data set

WAVE> oplot,x,z ; second data set

Setting the symbol for your plot

This speci�es the symbol. Some common examples are:

0 No symbol { points connected by lines
1 +
2 *
3 . (dot)
4 �
5 4
6 2
7 �
8 user-de�ned

Use negative values of psym to connect points with straight lines. The
symsize option can be used to get larger or smaller symbols, for example
plot,x,y,psym=2,symsize=3.

Setting the colour for your plot

Colour is speci�ed with the col option. Colours are initially shades of grey, unless
you use the tek_color command (see sec. 8 8.6. Alternatively, the loadct,n \load
colour table" command can be used to set colours up. Assuming you've given
the tek_color command, then you can use simple red/green/blue colours with
something like the code below.

53

WAVE> plot,x,y,/nodata ; plot using standard colours

WAVE> oplot,x,y,col=2 ; replot just the curve, with a new colour

The �rst few standard colours are:

0 white
1 red
2 green
3 blue
4 cyan
5 magenta
6 yellow
7 orange

Note that white on-screen will be printed as black. You can see the full colour table
with the command color_palette.

Plotting error bars

These are the same as plot and oplot but plot error bars on each point. For
example,

WAVE> plot,x,y,title='Plot with errors',/nodata

WAVE> oploterr,x,y,dy

Note �rst of all the plot,...,/nodata. This plots the axes and title, but no data
points. Then oploterr then plots (x,y,dy) data sets where the third parameter
gives the size of the error bars.

8.5. 3D Plots with WAVE

The sequence of commands below is just to give you a taste of what WAVE can do.

WAVE> a=fltarr(100,100)

WAVE> for i = 0.0,99 do $

- for j = 0.0,99 do $

- a(i,j) = sin(i/5 + j/5)

So far, all we have done is calculate an array of numbers obeying a sine rule. To see
the result, use the command

54

WAVE> shade_surf, a

to produce a shaded surface. The command

WAVE> tvscl, a

will show you a view of your map from above on the same screen as your shaded
surface. This will appear as a small box in the lower left-hand corner.

Alternatively, WAVE allows you to see contours of your 3D map. Use the command

WAVE> contour, a

to see this.

8.6. Environment

WAVE needs to know how to �nd some things, and it uses certain environment vari-
ables to help. In your .profile, .cshrc or other initialisation �le, put in:

export MY_WAVE_DIR=~/wave

export WAVE_STARTUP=~/wave/wavestartup

or, if you use a version of the Bourne or C-shells,

setenv MY_WAVE_DIR ~/wave

setenv WAVE_STARTUP ~/wave/wavestartup

You should also have a WAVE directory ~/wave and a WAVE startup script. The latter
can be many things, but here's an example that helps avoid many curly problems:

COMMON colornames, black, red, yellow, green, cyan, magenta, blue

device,retain=2 ; set backing store on for all windows

emacs_keys ; attempt to get emacs-like key action

xsize=40

55

ysize=40

window,xsize=xsize,ysize=ysize,colors=128,retain=2

wdelete

; set first 16 colours to simple things like black, red, green, ...

tek_color

8.7. Quick Reference Section

Getting Started

wave gets you into WAVE

quit gets you out of WAVE
help hypertext help �le
help,/doc full help document
demo runs demonstration

Plotting: 2D

plot,x,y plots 2 columns
oplot,x,y plots second data set over �rst
ploterr plots with error bars
oploterr over-plots with error bars

Options:

/nodata plots axes, but no data points
col select colour
psym select symbol
symsize sets symbol size
plot_io plot with log for y-axis
plot_oi plot with log for x-axis
plot_oo plot with log for both axes
title='' specify title of plot
xtitle='' specify title of x-axis
ytitle='' specify title of y-axis
xrange=[] sets range of x-axis
yrange=[] sets range of y-axis
xstyle=1 ensures WAVE doesn't round-o� range
ystyle=1

56

Plotting: 3D

shade_surf plots a shaded 3D surface
tvscl plots a view from above
contour plots a series of contour lines

Working inside WAVE

fname='mydata.dat' de�nes �le name
status=dc read free(fname,x,y,/column)

reads data from a �le in column format
.run file.pro compiles a procedure
postscript,file.ps redirects output to postscript �le
postscript,/close closes postscript �le
postscript,/help more postscript options
spawn run Unix programs from inside WAVE
spawn,'gs file.ps' view postscript �le with ghostscript
spawn,'qpr file.ps' print from within WAVE

retall tells WAVE to give up and start again
$ splits a long command
; indicates a comment
Ctrl-Z temporarily stops WAVE
fg gets back to WAVE after a temporary stop

57

9. FPLOT: BASIC PLOTTING AND CURVE FITTING

There are a host of relatively simple plotting packages (e.g. fplot, gnuplot, xplot,
. . .) now available on the system. All are reasonably self explanatory with on-line
help facilities, however, for the purposes of this manual we will concentrate on one
of the most comprehensive packages, fplot, which has been used for some time
for the production of publication quality graphs. The program fplot is a general
purpose plotting and �tting program which was originally written here at the School
of Physics by D. Jamieson and further developed by R. Brown.

9.1. From data to graph

To enter fplot type

% fp

You will get an Xterm fplot window with the prompt

Fp >

A session will usually involve reading in data from a �le, plotting to the screen,
adding captions and printing a hard copy. Here is a typical fplot session.

Fp > make/2 test.dat

! Read in data from �le test.dat in x,y format (the �lename can be anything).

Fp > dr/d d

! Disable the drawing of data points (dr/e d enables drawing).

Fp > spline

! Cubic spline interpolation (draws a nice smooth line through data { if too many
points use fun 9).

Fp > dr/x

58

! Draw to the screen only using default scales.

Fp > cap

! Change the title of the plot.

Fp > cap/x

! Change the x-axis caption (for y{axis use cap/y).

Fp > dr/xp

! Draw to the screen and to the postscript �le.

Fp > close/p

! Close the postscript �le so it can be printed.

Fp > exit

! Exit from the fplot session (if the postscript �le has not been closed it will be
closed by exiting).

9.2. Printing Fplot graphs

The graph has been saved in postscript format to a �le called Fplot.ps. Before
printing to a laser writer you must make sure that everything is OK (so that paper
and printing time is not wasted) by using the ghostscript or ghostview previewers.
This will display your plot to the screen as it will appear in print. To view your plot
using ghostscript type

% gs Fplot.ps

once satis�ed simply kill the ghostscript screen by typing alt-f4. To print the plot
contained in the �le Fplot.ps you use the qpr command:

% qpr Fplot.ps

59

9.3. Miscellaneous commands

help ! Displays a menu of help topics.

dr/# x ! Prompt for user speci�ed x and y ranges (# = x, p or xp).

dr/r! Redraw. Once you have drawn one graph to the devices speci�ed (e.g. using
dr/xp x) you can make/2 another �le and draw this data to the same plot using
the redraw command.

label ! Insert text (a label) { coordinates, orientation and character size will be
prompted for.

fun ! Displays a list of �tting functions (see the commands np, par and mask).

log/x ! Logs the x{axis (log/y for y{axis).

def/#! shows the default settings of various parameters (# = x,p or xp) governing
the output which can be modi�ed (see template macro section).

dr/j f ! multiply size of data points by factor f .

dr/n ! changes the shape of the data points to shape n, where n is an integer
between 1 and 8. For instance, dr/5 will plot the data points as stars.

9.4. Macros

It often happens that you end up repeating a particular sequence of fplot commands
each time you start the program. A lot of time can be saved by simply listing the
commands in a �le (a macro) as you would type them in a fplot session and reading
that �le in the fplot session. For example if a �le calledmacro.fp has the following
lines:

make/2 test.dat

cap

this is the title of my graph

cap/x

x-axis caption

60

cap/y

y-axis caption

dr/x

then the command

Fp > @macro

will read in the fplot commands from the �le macro.fp (the extension .fp signi�es
that the �le is a fplot macro).

9.5. Sample macro

Here is a sample macro which plots some data from a fourth year student's (highly
�ctitious) quantum gravity calculation. This example incorporates a number of
Fplot's commonly used features. Of course, it is di�cult to include all the features
of this plotting program, however, online help is available.

Consider a �le planck.dat in (x; y; �y) format with the following data to which we
want to �t a straight line, add captions and plot for publication.

Data from file: planck.dat

1 0.20 0.08

2 0.40 0.10

3 0.78 0.09

4 1.02 0.06

5 1.27 0.08

6 1.61 0.10

The �nal result from the macro described below appears overleaf.

61

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Space-time dimension, D

R
el

at
iv

e
P

la
nc

k
C

on
st

an
t (

un
it

s
of

 h
 P

la
nc

k)

Quantum Gravity Planck Constant Calculation

The following macro �le, broken into sections for ease of explanation, produced the
plot shown.

make/3 planck.dat

def/x as = 1

def/p as=1 xo=4 yo=14 sz=12 wa=0 ds=planck.ps

wi 2.7

chr n

The data has been read with the errors on the y values in the third column (make=3).
The aspect ratio for the plot to the screen has been set to 1 (def/x as=1) { it is usually
easier for journals (e.g. Physical Review) to print square graphs. The postscript �le
has been designated planck.ps (ds=planck.ps) and the o�sets (xo and yo), size (sz
and orientation (wa) have been set so that the �nal printout will look reasonable.
The line-width for the postscript �le has been set (wi 2.7) and the native fonts of
the printer accessed (chr n).

cap

cap/x

Space-time dimension, D

cap/y

Relative Planck Constant (units of h^D Planck^+)

dr/m

62

0

1

The caption has been set blank (the default caption is the �lename and as the caption
command is unpredictable we will set it blank and later use the label command
instead). Captions for the x and y axes are set. The control characters which
control subscripts and superscripts are: ^D subscript text ^+ and ^U superscript
text �̂. Greek letters can be written as^G greek text ^R. The characters^R reset a
given mode. The number of digits after the decimal place for x and y values have
been set to 0 and 1 respectively (dr=m) { this is useful if the data includes integers.

fun 2

npar 3

par 2

0

ma 2

0

fit

dr/xp x

0 7

0 2.0

In �tting the data to a straight line the polynomial function is chosen (fun 2) { a
list of possible functions can be obtained by typing fun. The polynomial form is
y = yo + k1(x+ a) + k2(x+ a)2 + k3(x+ a)3 + :::. The number of �tting parameters
is set to three (npar 3) and the o�set parameter a (parameter number 2) is set to
zero and removed from the �t by masking parameter 2 to zero. The straight line �t
is carried out (fit). The data is plotted to screen and the postscript �le with user
de�ned ranges (dr/xp x) of x 2 [0; 7] and y 2 [0:0; 2:0].

lab

0.5 1.8

0

1.0

Quantum Gravity Planck Constant Calculation

A label has been de�ned at the position (x; y) = (0:5; 1:8) with orientation of 0
degrees and text size 1.0.

def/xp lt=1

arc l

0 1.0

7 1.0

close/p

63

The default line-type (lt) has been changed to a dashed line for the screen and
postscript �le (def/xp lt=1). A straight line has been drawn (arc l) starting at
(x; y) = (0; 1:0) and ending at (x; y) = (7; 1:0) (i.e. a horizontal dashed line). The
postscript �le is then closed (close/p).

9.6. Multiple graphs

The macro below shows how to change the size of a graph and its position on the
page. Using a line such as,

def/p xo=1, yo=10.5, as=1, sz=6, wa=0 ds=converg4.ps

you can set the x and y o�sets, the aspect ratio (as), the size (sz), and so on. The
ds command determines what the output postscript �le will be called. In the case
shown below, these commands are used in combination to place four di�erent graphs
on a single page. The resulting page is shown in the chapter on LaTeX, �gure 2.

def/p xo=1, yo=10.5, as=1, sz=6, wa=0 ds=converg4.ps

make/2 mconv1234.dat

cap

MFDM - Gaussian Graded Core

cap/x

^G a ^R-value

cap/y

Calculated U-value

dr/3

dr/xp x

1.5 4.0

def/p xo=1, yo=18.5, as=1, sz=6, wa=0 ds=converg4.ps

make/2 fconv8.dat

cap

FDM - Gaussian Graded Core

cap/x

L(micron)

cap/y

Calculated U-value

dr/3

dr/xp x

64

1.5 4.0

def/p xo=11, yo=10.5, as=1, sz=6, wa=0 ds=converg4.ps

make/2 mconv5.dat

cap

MFDM - Step Profile Square Core

cap/x

^G a^R-value

cap/y

Calculated U-value

dr/xp x

1.5 4.0

def/p xo=11, yo=18.5, as=1, sz=6, wa=0 ds=conver4.ps

make/2 fconv3_4.dat

cap

FDM - Step Profile Square Core

cap/x

L(micron)

cap/y

Calculated U-value

dr/xp x

1.5 4.0

close/p

65

10. LATEX AND REPORT WRITING

LaTeX (pronounced \lay-tech") has become the standard wordprocessing package
in physics for writing reports and papers. Using LaTeX requires learning a rel-
atively simple programming language, the functions of which give the package its
strongest asset { the fact that mathematical typesetting will come out correct (mod-
ulo programming errors) without the author having to waste time \beautifying"
expressions. Many journals will now accept electronic submission of manuscripts in
LaTeX format. It has also become the standard to write up one's fourth year report
in LaTeX.

The following section introduces you to some of the main features of LaTeX, and
takes you step-by-step through the fourth-year template �le. In conjunction with
this you should read the \Essential LaTeX" guide, which can be accessed from the
Part IV home page. This is available in the form of an unprocessed LaTeX �le.Click
on the link, and save the �le to an appropriate directory, making sure you use the
extension \.tex". You will then need to LaTeX it by typing

% latex essential.tex

You can now view it using the xdvi utility by typing

% xdvi essential

(See section the next section for the xdvi command.)

For more advanced LaTeX use, see the \LaTeX2e" user-guide, also available on
the part IV homepage, or have a look at the \LaTeX User's Guide & Reference
Manual", by L. Lamport (copy available in the Baker Lab). There is also a link to a
TeX FAQ (a list of frequently asked questions and answers about TeX) on the part
IV homepage - some of the questions relate to common problems encountered when
using LaTeX.

10.1. Creating, compiling, previewing and printing LaTeX documents

Consider the following �le �rst.tex which is an example of a simple LaTeX docu-
ment with some mathematics.

\documentstyle[12pt]{article}

\begin{document}

66

This is the first paragraph so it appears automatically indented. The

amount of indentation can be controlled by a definition statement at

the beginning of the file.

Skipping a line automatically starts a new paragraph.\\

But two back-slashes gives a carriage return. You can make characters

{\large larger} or put them in {\bf bold face} or {\it italics}.

Mathematical expressions can be inserted in a line such as $E=m c^2$

by enclosing the expression in \$ signs. Note the backslash negated the

special function of the \$ sign.

An equation on its own can be defined as

\begin{equation}

\left[-{\hbar^2\over 2 m}{\bf \laplace}^2 + V({\bf r})\right]

\psi({\bf r}) = E\psi({\bf r})

\end{equation}

\end{document}

To compile the �le �rst.tex under LaTeX, use the latex command (which invokes
the latest version of LaTeX)

% latex first

If all goes well you can now preview the document on the screen using the xdvi
command

% xdvi first

The .exrc �le has de�ned certain function keys for LaTeX within a vi session so
that you need not leave the editor after making changes. For example F11 will save
and latex the �le, and F12 will bring up the xdvi previewer.

To create a postscript �le �rst.ps for printout use the dvips command

% dvips -o first.ps first -pp 5-17

The \-pp 5-17"
ag causes the dvips command to prepare only pages 5 to 17 in
postscript form, so that you can print out only the pages you require. If you leave

67

out this
ag all pages are automatically converted to postscript. For very long
documents, you may want to use the dvi2ps command which places two pages to
a side.

The postscript �le can be checked (to save time and paper) using either ghostscript
or the more sophisticated ghostview commands. The dvips command has many
useful options which are summarized in the manual page from the man command.

The printout of the �le �rst.ps should look like this:

This is the �rst paragraph so it appears automatically indented. The amount of
indentation can be controlled by a de�nition statement at the beginning of the �le.

Skipping a line automatically starts a new paragraph.
But two back-slashes gives a carriage return. You can make characters larger or
put them in bold face or italics or a combination.

Mathematical expressions can be inserted in a line such as E = mc2 by enclosing
the expression in $ signs. Note the backslash negated the special function of the $
sign.

An equation on its own can be de�ned as
"
�
�h2

2m
r2 + V (r)

#
 (r) = E (r) (1)

The UNIX ispell command is useful to check the LaTeX �le before the �nal com-
pilation and printing.

% ispell -t first.tex

(The -t option tells the spell checker to take into account LaTeX commands)

10.2. Template fourth year report

Some typical uses of LaTeX, particularly in the context of writing up a fourth year
report will appear in the template LaTeX �le to follow. The template �le that
follows can be found in /home/4thyear/report.tex.

% Template fourth year report LaTeX document.

%---

68

% define the document style (using revtex macros)

\documentstyle[psfig,preprint,aps,epsf,tighten,floats]{revtex}

\topmargin 0mm %top of page margin

\headheight 0pt %running head height

\headsep 0pt %head to text separation

\textheight 230mm %text height

\parindent 0em %paragraph indentation width

\parskip 4mm %paragraph width

\oddsidemargin 0mm %left side of page margin width

\evensidemargin 0pt %right side of page margin width

\textwidth 150mm %width of text across the page

\def\thesection{\arabic{section}} %defines arabic section numbering

\renewcommand{\thesubsection}{\thesection.\arabic{subsection}}

%

\begin{document}

%---

% Insert the postscript of the Melbourne University logo at the top

\begin{figure*}

\vspace*{30mm}

\centerline{\special{psfile=/home/4th_year/UMCrest97.eps vscale=80 hscale=80

hoffset=-40}}

\end{figure*}

\rule{160mm}{0.5mm}

%---

% Now start the title page

%

\begin{center}

{\bf\large Unification of General Relativity and Quantum Mechanics}

\end{center}

\begin{center}

{\large S.O. Clever}

\end{center}

\begin{center}

{Honours Report, 1998}

\end{center}

\vspace*{10mm}

\begin{center}

Abstract

\end{center}

A new quantization of space-time geometry is developed which, for

the first time, unifies general relativity and quantum mechanics.

An amusing corollary on renormalization of the manifold summation

provides a detailed temporal evaluation of the Hubble constant and

the ultimate fate of the universe.

69

\begin{center}

Supervisor: Dr. A.R.C. Forms

\end{center}

\vspace*{10mm}

I authorize the Chairman of the School of Physics to make or have made a

copy of this report for supply to any person judged to have an

acceptable reason for access to the information, i.e., for research,

study or instruction.

\vspace*{10mm}

\begin{flushright}

Signature.....................................

\end{flushright}

\newpage

\section{Introduction}

I will try to cram in most of the bits and pieces needed for a typical

report, namely

\begin{itemize}

\item sections

\item equations

\item references

\item tables

\item figures

\end{itemize}

Well, that covered itemization already (see also enumerate).

\section{Sections}

As you can see sections are pretty easy and self explanatory. The new

section is automatically numbered correctly. Subsections are just as easy

({\bf subsection} command).

A table of contents is constructed by the tableofcontents command.

\section{Equations}

This is one of the most important (sometimes fun, quite often

extremely frustrating) aspects of writing a report in physics.

Using the {\bf equation} environment, one line equations will be numbered

70

\begin{equation}

Z = \sum_{n=0}^{\infty} e^{-\beta E_n}.

\end{equation}

Bra and kets are easy. When you are including equations in a

sentence, such as

\begin{equation}

H|\psi\rangle = E |\psi\rangle,

\end{equation}

don't forget to use punctuation.

The most common problem to overcome is when equations get large and run

over more than one line. How to break the equation is an art form and

best left to the author. Use the {\bf eqnarray} environment and {\bf nonumber}

to turn off the numbering of every line. Here are some examples.

\begin{eqnarray}

\beta_{n}^{2}&=& n c_{2}N_{p}

+ {1\over 2}\,n\,(n-1)\left[{c_{2}c_{4} - c_{3}^{2}\over c_{2}^{2}}\right]

\nonumber\\

\nonumber\\

&+& {1\over 6}\,n\,(n-1)\,(n-2) \left[{-12 c_{3}^4 + 21 c_{2} c_{3}^2 c_{4}

- 4 c_{2}^2 c_{4}^2 - 6 c_{2}^2 c_{3} c_{5} + c_{2}^3 c_{6}

\over 2 c_{2}^5}\right] {1\over N_{p}}

+ \dots

\end{eqnarray}

The equation is split by aligning the = sign and the + sign with the

\& characters together with nonumbered carriage returns. Two returns

were put in to space the lines out a bit. Note how the left and right

brackets automatically size themselves for the content (braces ``{\bf \{}''

or parentheses ``{\bf (}'' are used in the same way). If you need to

break a line with matching {\bf \backslashleft[} and {\bf

\backslashright]} brackets (or parentheses or braces) you can

instead use independent brackets tailored to the right size using

commands such as {\bf bigl[} for a big left bracket

{\bf Bigr\backslash\}} for an even bigger right brace, etc.

Normal spaces are ignored in math mode, but small spaces can be

introduced, e.g. by using backslash-comma and larger spaces can be put

in using {\bf quad}.

71

Sometimes, no matter how hard you try it just can't be done elegantly

and you have to cut your losses (or make some drastic notational

changes):

\begin{eqnarray}

M_V(y) &=& {4\over {3\,y}}

- {(2y^2+3)^2(336y\sqrt{\Delta(y)}-1129y^4-1998y^2-432)

\over 36y^2\sqrt{\Delta(y)}(2y^6+114y^2-93)}\nonumber\\ \nonumber\\

&+& {2(2y^2+3)(90y^8-2426y^6-713y^4-7683y^2-288)(12y\sqrt{\Delta(y)}+3y^4

-32y^2-12)\over 27y^3(2y^6+114y^2-93)^2}

\end{eqnarray}

\section{References}

\label{refs}

References are handled using the {\bf cite} command. Let's add a

reference now\cite{refname1} to the LaTeX manual. At the end of

this document the bibliography will be defined and next to {\bf

refname1} will appear the appropriate reference. Wherever {\bf refname1}

is cited in the text from now on it will be given the correct numeral,

in this case number 1 because it is the first reference of this

document. The next reference\cite{nextone} will have the number 2 and

so on. At the end of this sample document the bibliography will be

listed. To refer to a section of your document, use the {\bf ref} command.

First give the section you wish to refer to a {\bf label}. The section

you are now reading has been given the label ``refs'' by including

a line just below the section header. Now whenever you wish to refer

to this section, just type

\ref{refs}

and LaTeX will automatically

print out the correct section number, taking into account any

renumbering which occurs due to the addition of new sections

and so on. Whenever you define or change references you have

to compile the file twice to get cross referencing correct.

\section{Tables}

Here is an example of how to build a table.

\mediumtext

\begin{table}[htbp]

\caption{First order Lanczos cluster expansion

approximation, $E_0(\lambda)$, for the ground state of the

anharmonic oscillator, $H = -{1\over 2}\,{d^2\over dx^2} + {1\over

72

2}\,x^2 + \lambda\,x^4$.}

\vspace*{10mm}

\label{AHO-table}

\begin{tabular}{cccccc}

& ${\rm log}_{10}\lambda$ & Variational & $E_0(\lambda)$ & Exact &\\

\tableline

& 0 & 0.8125 & 0.8037 & 0.8038 &\\

& 1 & 1.5313 & 1.5040 & 1.5050 &\\

& 2 & 3.1924 & 3.1286 & 3.1314 &\\

& 3 & 6.8280 & 6.6877 & 6.6942 &\\

& 4 & 14.6871 & 14.3838 & 14.3980 &\\

& 5 & 31.6317 & 30.9775 & 31.0103 &\\

& 6 & 68.1434 & 66.7338 & 67.0993 &\\

\end{tabular}

\end{table}

Note the definition of the number of columns using {\bf cccccc} and the

alignment once again using {\bf \&}.

\section{figures}

Taking the postscript figure example {\bf planck.ps} from the

Fplot section this can be inserted into the text in the following way.

\newpage

\begin{figure}[htp]

\special{psfile=planck.ps hscale=40 vscale=40 hoffset=80

voffset=-300 angle=0}

\caption{This is a completely fictitious graph}

\end{figure}

\vspace{7cm}

Note the {\bf newpage} command which was needed to put the figure

on the next page and the vertical spacing of 7 cm to accommodate

it.

\begin{thebibliography}

\small

\bibitem{refname1} LaTeX manual

\bibitem{nextone}J. Bloggs, Private Communication.

\end{thebibliography}

\end{document}

The LaTeX'ed template report appears as follows.

73

Uni�cation of General Relativity and Quantum Mechanics

S.O. Clever

Honours Report, 1998

Abstract

A new quantization of space-time geometry is developed which, for the �rst time,
uni�es general relativity and quantum mechanics. An amusing corollary on renor-
malization of the manifold summation provides a detailed temporal evaluation of
the Hubble constant and the ultimate fate of the universe.

Supervisor: Dr. A.R.C. Forms

I authorize the Chairman of the School of Physics to make or have made a copy of
this report for supply to any person judged to have an acceptable reason for access
to the information, i.e., for research, study or instruction.

Signature.....................................

74

1. INTRODUCTION

I will try to cram in most of the bits and pieces needed for a typical report, namely

� sections

� equations

� references

� tables

� �gures

Well, that covered itemization already (see enumerate).

2. SECTIONS

As you can see sections are pretty easy and self explanatory. The new section is
automatically numbered correctly. Subsections are just as easy. A table of contents
is constructed by the tableofcontents command.

3. EQUATIONS

This is one of the most important (sometimes fun, quite often extremely frustrating)
aspects of writing a report in physics.

Using the equation environment, one line equations will be numbered

Z =
1X
n=0

e��En : (2)

Bra and kets are easy. When you are including equations in a sentence, such as

Hj i = Ej i; (3)

don't forget to use punctuation.

The most common problem to overcome is when equations get large and run over
more than one line. How to break the equation is an art form and best left to the

75

author. Use the eqnarray environment and nonumber to turn o� the numbering
of every line. Here are some examples.

�2n = nc2Np +
1

2
n (n� 1)

"
c2c4 � c2

3

c22

#

+
1

6
n (n� 1) (n� 2)

"
�12c4

3
+ 21c2c

2

3
c4 � 4c2

2
c2
4
� 6c2

2
c3c5 + c3

2
c6

2c52

#
1

Np

+ : : : (4)

The equation is split by aligning the = sign and the + sign with the & characters
together with nonumbered carriage returns. Two returns were put in to space the
lines out a bit. Note how the left and right brackets automatically size themselves
for the content (braces \f" or parentheses \(" are used in the same way). If you
need to break a line with matching nleft[and nright] brackets (or parentheses or
braces) you can instead use independent brackets tailored to the right size using
commands such as bigl[for a big left bracket Bigrng for an even bigger right brace,
etc.

Normal spaces are ignored in math mode, but small spaces can be introduced, e.g.
by using backslash-comma and larger spaces can be put in using quad.

Sometimes, no matter how hard you try it just can't be done elegantly and you have
to cut your losses (or make some drastic notational changes):

MV (y) =
4

3 y
�

(2y2 + 3)2(336y
q
�(y)� 1129y4 � 1998y2 � 432)

36y2
q
�(y)(2y6 + 114y2 � 93)

+
2(2y2 + 3)(90y8 � 2426y6 � 713y4 � 7683y2 � 288)(12y

q
�(y) + 3y4 � 32y2 � 12)

27y3(2y6 + 114y2 � 93)2

(5)

4. REFERENCES

References are handled using the cite command. Let's add a reference now[1] to
the LaTeX manual. At the end of this document the bibliography will be de�ned
and next to refname1 will appear the appropriate reference. Wherever refname1
is cited in the text from now on it will be given the correct numeral, in this case
number 1 because it is the �rst reference of this document. The next reference[2] will
have the number 2 and so on. At the end of this sample document the bibliography
will be listed.
To refer to a particular section of your document by number, use the ref command.
First give the section you wish to refer to a label. The section you are now reading
has been given the label \refs" by including a line just below the section header.
Now whenever you wish to refer to this section, just type

76

\ref{refs}

and LaTeX will automatically print out the correct section number, taking into
account any renumbering which occurs due to the addition of new sections and so
on. Whenever you de�ne or change references you have to compile the �le twice to
get cross referencing correct.

5. TABLES

Here is an example of how to build a table.

TABLE I. First order Lanczos cluster expansion approximation, E0(�), for the ground

state of the anharmonic oscillator, H = �1

2

d2

dx2
+ 1

2
x
2 + �x

4.

log10� Variational E0(�) Exact

0 0.8125 0.8037 0.8038

1 1.5313 1.5040 1.5050

2 3.1924 3.1286 3.1314

3 6.8280 6.6877 6.6942

4 14.6871 14.3838 14.3980

5 31.6317 30.9775 31.0103

6 68.1434 66.7338 67.0993

Note the de�nition of the number of columns using cccccc and the alignment once
again using &.

6. FIGURES

Taking the postscript �gure example planck.ps from the Fplot section this can be
inserted into the text in the following way.

77

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Space-time dimension, D

R
el

at
iv

e
P

la
nc

k
C

on
st

an
t (

un
it

s
of

 h
 P

la
nc

k)

Quantum Gravity Planck Constant Calculation

FIG. 1. This is a completely �ctitious graph

Note the newpage command which was needed to put the �gure on the next page
and the vertical spacing of 7 cm to accommodate it.

REFERENCES

[1] LaTeX manual
[2] J. Bloggs, Private communication

78

10.3. More on including �gures

Inserting �gures and graphs can be one of the more frustrating aspects of using
LaTeX . Don't expect to always get the results you want right away. If you persevere,
and check the manual or ask for help when necessary, you should always be able to
achieve decent results.

Note that xdvi will not show some �gures - you have to use dvips and then ghost-
view the document to see them. In particular, the Melbourne University crest on
the title page of this template �le will give error messages when you use xdvi to view
the document - don't worry about this, as the logo will come up �ne when once you
have converted the �le to postscript using the dvips command.

Since it is not always possible to place an inserted �gure directly next to the ap-
propriate text, LaTeX needs to make decisions regarding where the most reasonable
position for each �gure is. This is called \
oating" the �gures. LaTeX has a hi-
erarchy of standard rules for determining where to insert
oating objects such as
�gures.

Varying the settings in brackets directly after the begin�gure command (in the
example, [htb]) is one way of altering the placement of �gures. In this case we have
told LaTeX that we would like the �gure to be printed (h)ere if possible, or at the
(t)op or the (b)ottom of a page, if this proves to be impractical.

These rules should usually ensure that the �gure is placed somewhere reasonable,
however if LaTeX is not doing what you would like with your �gures, check these
rules in the manual and see if you can work out why it's doing what it's doing - once
you know this it should be possible to rectify the problem.

The special command should work for most �gures if they are in post-script format.
If this command appears to be behaving strangely, or fails to work at all, you can
try the ps�g command. This command requires the inclusion of the ps�g revtex
package in your documentstyle command at the start, ie

\documentstyle[psfig,preprint,aps,epsf,tighten,floats]{revtex}

Ps�g is a revtex package or \macro" designed to help in the importation of �gures
and other postscript �les. If it's not already there, you simply need to type \ps�g"
somewhere between the square brackets in your documentstyle command. Now
you can use the ps�g command to insert your �gures. This command requires
the postscript �le to be in a form known as \encapsulated postscript". A normal
postscript �le assumes the �gure is meant to take up a whole page. When this �le
is then imported into your LaTeX document, there can be di�culties related to the
fact that the boundary of the �gure is in a sense unde�ned. An encapsulated �le

79

has some information somewhere in it which in e�ect de�nes a bounding box around
the �gure. This bounding box then makes it easier for applications such as LaTeX
to deal with the �gure. To convert your postscript �les to encapsulated postscript
is easy - at the UNIX prompt just type

ps2epsi infile.ps [outfile.epsi]

To insert an encapsulated �gure, converg4.epsi (the four-to-a-page example from
the Fplot section), into your document using the ps�g command include the fol-
lowing (output shown overleaf):

\begin{figure}[htb]

\psfig{file=converg4.epsi,width=150mm,clip=0}

\caption{Figures Comparing Convergence for the Two Methods}

\label{converg4}

\end{figure}

This should work in most cases. If neither ps�g nor special will work, check the
LaTeX manual or ask someone for help.

Another feature of the ps�g command which is sometimes useful is that the width
setting is measured directly in millimeters, so you don't have to worry about the
vscale and hscale settings. LaTeX uses the bounding box proportions and the width
in millimeters to work out how to appropriately scale the �gure.

80

FIG. 2. Figures Comparing Convergence for the Two Methods

81

11. ALGEBRAIC PACKAGES: MATHEMATICA, MAPLE AND REDUCE

Somewhat of a revolution in physics has occurred with the advent of reliable, easy to
use algebraic packages which can perform large mind numbing algebraic tasks nearly
at the speed of light. For many it has become the norm to do analytic and numerical
work using such packages. Extreme caution is urged in using the numerical aspects
of these packages { for the simple reason that you are using a black box with no
understanding of the method and its limitations. However, the analytic capabilities
of these packages has a great deal of potential (watch out for bugs by cross-checking
results with another package!) and it is therefore important to learn how to wield
these new tools.

Mathematica and Maple do essentially the same analytical and numerical tasks. The
main di�erence is thatMaple has a user friendly X-window interface and an extensive
online help facility. Mathematica has no online help, so to learn how to use it you
need to refer to the reference book kept (and never removed) in the Baker Lab.

Reduce is much less general in its analytic and numerical capabilities. In fact the
main reason for using Reduce is that it is a low level algebraic language that allows
one to program virtually any algebraic task. This is particularly useful for non-
commutating algebra, which the other more general packages are less useful for.
Also, Reduce has an inbuilt capability for covariant vector algebra and Dirac-ology.
Reduce runs in an X-window interface.

Due to license restrictions these programs are only available on mozart.

To start a session on Mathematica, Maple or Reduce the commands are math,
xmaple and xr respectively.

82

12. ELECTRONIC MAIL AND THE INTERNET

Probably one of the most common uses of the computer system is for fast commu-
nication, both locally and worldwide. Communication is possible by electronic mail
(almost instantaneous delivery), logins to remote computer systems, �le transfers
between computers and real time conversations between users on di�erent comput-
ers.

12.1. Internet addresses

Each user of the computer system has an address for the worldwide internet en-
abling communication in all the above modes. This internet address is made
up of the username of the person and the computer's node address as user-
name@node. For example the internet address for the user janet on the
computer tauon is janet@tauon.ph.unimelb.edu.au. More recently inter-
net addresses on the computer system in the School of Physics can be speci-
�ed without the computer name by using the person's �rst initial and surname,
e.g. l.hollenberg@physics.unimelb.edu.au. An address on a computer in
another country follows the same pattern, e.g. an address in Japan might be
john@sushi.raw.jp. Once the internet address of a particular person is known
it is easy to use the various communication modes.

12.2. Electronic mail

Electronic mail, or email as it is usually referred to, has become the standard method
of communication between institutions. A letter sent by email reaches the recipient's
account in a matter of seconds { regardless of where that computer is actually
situated on the globe.

You can compose, send, and read mail using utilities such as mail, pine, and elm.

The use ofmail is described below. However personally I �nd the pine mail-reading
utility more convenient to use, as it is menu-driven. To use pine to read your mail
simply type

pine

You can now select what you want to do from the main menu - the rest is up to you!

83

Instead of using the pine mail-reader for your email, you can use the standard unix
mail feature if you wish. To mail a letter to John in Japan from Janet's account
is as easy as the following (N.B. On Digital Alpha Stations (i.e. tauon) the same
command is Mail):

% mail john@sushi.raw.jp

Subject: Your latest research...

Dear John,

I think your latest paper has some serious flaws.

Yours sincerely,

Janet.

^D

%

The mailer prompts for a subject line (not compulsory) and then the message is
entered with returns at the end of lines. Finally, to send the message type control d.
To abort the message type control c (before using control d of course).

You can send a �le containing the message { this useful for sending messages which
may be di�cult to write interactively or data �les etc. The format to send the �le
letter.tex to John is (assuming letter.tex is in the working directory):

% mail john@sushi.raw.jp < letter.tex

There are various useful options with the mail command. For example, to check
that the mail actually was sent to the recipient's account the -v option will printout
the progress of the message across the internet.

For Janet to check her mailbox for new mail the command is (see the command elm
for a more sophisticated mailbox program)

% mail

Mail [5.2 UCB] [IBM AIX 3.2] Type ? for help.

"/usr/spool/mail/janet": 1 message 1 new

>N 1 john@sushi.raw.jp Fri Dec 23 19:24 11/309 "Who cares?"

N 2 prize@nobel.vax.swe Fri Dec 23 20:04 12/319 "rejection of prize??"

&

To view a message type the number of the message (digit to the right of N for new
mail). A message can be written to a �le, for example

84

& w 1 john_reply

Caution: if the message was being read for the �rst time it will be deleted from the
mailbox when using the write command.

Type q to quit from the mail viewer and save the read messages to the mailbox. To
view the contents of the mailbox the command is

% mail -f

Mail [5.2 UCB] [IBM AIX 3.2] Type ? for help.

"/home/janet/mbox": 3 messages

> 1 john@sushi.raw.jp Fri Dec 23 19:24 11/309 "Who cares?"

2 prize@nobel.vax.swe Fri Dec 23 20:04 12/319 "rejection of prize??"

3 root@tauon Tue Dec 20 09:02 12/537 "Closure of account"

&

12.3. Telnet and File Transfer Protocol (FTP)

If you are logged on to an account on a computer on the internet, you are able to
login to any other internet connected computer (providing you have an account).
For example, if Janet had an account on sushi she is able to use telnet to log into
that account from tauon:

% telnet sushi.raw.jp

Trying...

Connected to sushi.raw.jp

Escape character is '^]'.

AIX telnet (sushi.raw.jp)

IBM AIX Version 3 for RISC System/6000

(C) Copyrights by IBM and by others 1982, 1990.

login: janet

janet's Password:

Files can be transferred to other computers using email, but the most convenient way
to transfer �les, especially in bulk, is to use ftp. Janet can put the �le letter.tex
into her sushi account using ftp as follows.

% cd tex

85

% ftp sushi.raw.jp

Connected to sushi.raw.jp

Miscellaneous network information...

Name (sushi:janet): janet

331 Password required for janet.

Password:

230 User janet logged in.

ftp> put letter.tex

200 PORT command successful.

150 Opening data connection for todo.

226 Transfer complete.

124 bytes sent in 0.03409 seconds (3.552 Kbytes/s)

ftp> quit

221 Goodbye.

%

Files can be retrieved from the remote site (i.e. sushi in this case) using the get
command in the ftp environment. Use the online help for other commands.

12.4. Talking over the Internet

A facility exits whereby one user can talk to another user on another internet com-
puter (compatibility usually requires both systems to be operating under UNIX,
but exceptions do exist). For example if Janet wants to talk to John in more detail
about his paper, she can initiate contact by typing

% talk john@sushi.raw.jp

If all goes well, and John is logged on and choses to answer the call (instructions
appear on the screen for the callee) then the connection will be set up and each will
be able to see what the other types in real time (modulo a small time lag of a second
or so).

It is possible to �nd out login information about a user (including if they are cur-
rently logged in) by using the �nger command. For example, �ngering John might
result in the following:

% finger john@sushi.raw.jp

Login name: john In real life: John Hancock

Directory: /home/john Shell: /usr/bin/csh

On since Dec 23 18:21:10 on pts/0 9 minutes 16 seconds Idle Time

No Plan.

86

13. WORLD WIDE WEB

The World Wide Web is an interactive tool for searching data bases and bulletin
boards on the international internet. It has fast become a standard in information
exchange on a global scale. Users of the web should be aware of the fact that it
costs money to download information from any remote site (e.g. international or
interstate). This includes actions as simple as looking at a particular site to the
transfer of picture or data �les. This cost will be taken up by research groups and
the amount of raw data downloaded (i.e. usage) is monitored.

One gains access to the World Wide Web through a program called netscape.
Typing the command netscape brings up a X-window interface from which it is
simply a matter of pointing to what you want to see with the mouse and clicking.
There is a great deal of useful (and useless) information on the Web; due to costs
users should try to control their forays into Web-land.

Honours homepage

A part IV homepage with useful links now exists end can be found at:

http://www.ph.unimelb.edu.au/part4.html

This page is being developed into a resource base for certain lecture courses.

Preprints

Preprint archive: to �nd/retrieve preprints in a wide range of areas go to
http://xxx.adelaide.edu.au/

87

14. REFERENCES AND SUGGESTED READING (A FEW STARTERS)

UNIX, vi and all that:

\A Practical Guide to the UNIX System", by M.G. Sobell, Benjamin Cummings,
USA, 1984.

\Introduction to the UNIX Operating System", by V.Y. Hansper (copies available
in the Baker Lab. There is also a copy available in the form of a .dvi �le which can
be accessed from the Part IV \current students" home page. Save this �le to one of
your directories by clicking on the link, and then type \xdvi unix.dvi" to view it.)

Fortran C and C++ programing:

\The Essentials of FORTRAN", by Rev. Dennis C. Smolarski, S.J., PhD Research
and Education Association, 1994.

\C How to Program", by H.M. Deitel and P.J. Deitel, Prentice-Hall, 1992

\The C Programming Language", 2e, by BrianW. Kernighan and Dennis M. Ritchie,
Prentice-Hall, 1988

Numerical methods and software:

\Computational Methods in Physics and Engineering", S. Wong, Prentice-Hall,
1992.

\Numerical Recipes Online" (Fortran and C): retrieve
ps �les from http://cfatab.harvard.edu/nr/nronline.html (also, see reference in the
Baker lab (not to be removed!))

Netlib library of subroutines: see http://netlib2.cs.utk.edu

LaTeX:

\LaTeX user's guide and reference manual", L. Lamport, Addison-Wesley, 1997.

Or there are plenty of references online, for example:
http://newton.ex.ac.uk/people/resende/tex/node1.html

Acknowlegements

Many thanks to Dr. Mark Munro for a careful reading of the original manual and
many useful suggestions and to Steven Karataglidis for help on some of the �ner
points of RevTeX.

88

15. APPENDIX

15.1. UNIX glossary

Below is a list of UNIX commands, with a brief description of each one. This list
should give an indication of what is available. To �nd out more about any of these
commands use the man utility.

15.2. Files and directories

pwd ! Print Working Directory - tells you which directory you are currently in.
ls dirname ! lists the contents of the named directory(defaults to the current di-
rectory) .
cd dirname ! moves to the named subdirectory.
cd .. ! moves up to the directory above the current one.
mkdir dirname ! creates a new directory.
rmdir dirname ! deletes the named directory.
touch �lename ! creates an empty �le named �lename.
vi �lename ! Starts the vi editor and opens the named �le.
more �lename ! displays the named �le using the more utility.
tail �lename ! displays the last part of a �le.
rm �lename ! deletes the named �le.
cp �le1 �le2 ! makes a copy of �le1 and names it �le2.
mv �le1 �le2 ! renames �le1 to �le2.
ln ! makes a link to a �le.
which programname ! locates the named program �le or utility.
whereis �lename ! searches for the named �le.
�nd ! �nds �les.

grep ! searches for a pattern in a �le.
awk ! searches for and processes a pattern in a �le.
comm ! compares two �les.
di� ! displays di�erences between two �les.

sort ! sorts and/or merges �les.
spell ! checks a �le for spelling errors.
ispell -t ! checks a LaTeX �le for spelling errors.
wc ! gives a line, word, or character count.
uniq ! deletes repeated lines in a �le.

89

15.3. Printing

psf �le.txt > �le.ps ! converts a �le from text format to post-script format.
lpr -P bakerps �le.ps ! prints a post-script �le.
lpr -h -P bakerps-duplex �le.ps ! prints with no header, and double-sided. lpq
! displays information about the print-queue and printer-status.

15.4. Monitoring and controlling system processes

monitor ! displays information about system events and processes.
ps ! lists currently active processes, and their process ID numbers(PID).
who ! lists currently logged in users.
�nger name! tells you whether the named person is logged on, and displays their
.plan �le.

last name -n ! gives the last n times the named person has logged on.

lpq ! displays information about print-queue and printer-status.
chmod ! changes access mode to a �le.
�le ! manipulates a �le name and/or attributes.
kill x! terminates process x, where x is the process ID number(PID). See also the
\ps" command.

sleep x ! puts the process with ID number x to sleep.
stty ! sets, resets, or reports on workstation parameters.

15.5. Communication

talk username ! allows you to correspond with another user in real-time. Espe-
cially useful when they're sitting right next to you.

write username ! similar to talk.
mesg n! your account will refuse any talk or write messages, until you typemesg
y.

90

